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神經元網路訊息的因果分析神經元網路訊息的因果分析神經元網路訊息的因果分析神經元網路訊息的因果分析    

摘要摘要摘要摘要    

本文主要發展用來判別神經元網路資訊流向的統計分析方法。格蘭傑因果關係 (Granger 

causality, GC) 是個用來估計時間序列訊號間因果交互作用相當流行且有效的概念。在過去

的二十年來，GC 已成為一個可用來偵測多種不同類型神經活動資料間因果關聯的強大分析方

法。然而，在實際運用 GC 到神經科學領域時，有三個主要問題尚須進一步的研究與釐清：第

一，原始的 GC 測度被設計成非負實數的形式，因此缺乏用來區分神經元間興奮性與抑制性因

果關聯的有效特徵。第二，雖然 GC 已大量被使用，但估算出的因果強度與實際神經元之間突

觸權重的關聯仍不清楚。第三，GC 無法直接用來解析大尺度的神經元資料，因為其中的變數

數量經常遠遠超過所紀錄到的時間序列樣本數。對於上述前兩個問題，我們利用原始 GC 的架

構並根據一個最佳線性預測子（best linear predictor, BLP）的假設，提出了能夠有效解

析神經元網路間突觸權重的計算方法。在 BLP 的假設下，GC 可被擴展以同時測量神經元間興

奮性與抑制性作用。我們設計了三種不同類型的模擬神經元網路來測試所提的新方法，包含

從簡單的線性與近線性網路結構至複雜的非線性網路結構。這些模擬例子驗證了 BLP 假設的

正當性以及計算方法的正確性。此方法也被示範性的用來分析大腦前扣帶皮層（ACC）與紋狀

體（STR）真實的神經元活動資料。分析結果顯示，在注射 D2 多巴胺受體刺激劑的狀態下，

ACC 當中以及由 ACC投射至 STR存在顯著的興奮性作用，而 STR 當中存在顯著的抑制作用。 

 

實務上，從腦中擷取大尺度紀錄之神經訊號間的因果交互作用對於腦部特定功能之完整解析

與可靠推論來說相當重要。然而，在大尺度訊號中，神經元的數量往往嚴重大過紀錄到的訊

號長度；此過大的變數與樣本比值對於大多數現存的統計分析方法來說都會造成相當大的阻

礙，甚至使分析方法在數學計算上完全失效。本文接著介紹一個三階段的變數選擇方法，它

能夠有效地將一個大尺度變數集合調降成一個只包含有相關性變數的較小變數集，進而讓 GC

能夠應用到此調降的變數集合上。此方法使用（1）正交向前選擇解釋變量，（2）一停止準則

以終止前向納入變量，和（3）進一步向後修剪消除不相關變量。對於上段提到的第三個問題，

我們以此三階段方法為核心提出一個變量選擇演算法使得 GC 能夠被用來解析大尺度的時間

序列資料。我們設計了一個以電位閾值激發的大尺度神經元網路模型來試驗所提方法的一致

性。此方法應用在大鼠的行為資料分析中也得到全新的發現。這些框架提供了真實神經元網

路分析的新方向。 

關鍵詞關鍵詞關鍵詞關鍵詞：：：：格格格格蘭蘭蘭蘭傑傑傑傑因因因因果果果果關關關關係係係係、、、、格格格格蘭傑因蘭傑因蘭傑因蘭傑因果果果果指標指標指標指標、、、、向向向向量量量量自自自自迴迴迴迴歸模型歸模型歸模型歸模型、、、、神神神神經經經經元元元元網路網路網路網路、、、、突觸突觸突觸突觸權重權重權重權重估估估估計計計計、、、、
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Abstract

This thesis is devoted to developing statistical methods for identifying the information
flow of neuronal networks. Granger causality (GC) is a very popular and also useful
concept for estimating causal interactions between time-series signals. Over the past
two decades, GC has emerged as a powerful analytical method for detecting the causal
relationship among various types of neural activity data. However, three problems en-
countered when GC was used in the field of neuroscience remain not very clear and further
researches are needed. Firstly, the GC measure is designed to be nonnegative in its orig-
inal form, lacking of the trait for differentiating the effects of excitations and inhibitions
between neurons. Secondly, how is the estimated causality related to the underlying neu-
ronal synaptic weights? Thirdly, GC can not be applied to large-scale neuronal data, in
which the number of variables is far greater than the length of time series. For the first
two problems, we propose, under a best linear predictor (BLP) assumption, a compu-
tational algorithm for analyzing neuronal networks by estimating the synaptic weights
among them. Under the BLP assumption, the GC analysis can be extended to measure
both excitatory and inhibitory effects between neurons. The method was examined by
three sorts of simulated networks: those with linear, almost linear, and nonlinear network
structures. The method was also illustrated to analyze real spike train data from the an-
terior cingulate cortex (ACC) and the striatum (STR). The results showed, under the
quinpirole administration, the significant existence of excitatory effects inside the ACC,
excitatory effects from the ACC to the STR, and inhibitory effects inside the STR.

Extracting causal interactions from a large-scale recording of neural ensemble in the
brain is very important to a comprehensive understanding or a reliable inference of certain
brain functions. However, the oversized ratio between neuron number and signal length
causes great difficulties to most of existing statistical methods. This thesis also introduces
a three-stage variable selection approach that can be used to effectively reduce the large-
scale variable set to a small but relevant one and enables Granger causality to be applied
to the reduced set. The method uses (1) an orthogonalized forward selection of input
variables, (2) a stopping criterion to terminate the forward inclusion of variables, and (3)
a backward elimination to further trim irrelevant variables. For the third problem, we
propose a computational algorithm which wraps the above selection approach as its core,
enabling GC to work on large-scale time-series data. The method was examined by a
large-scale simulated threshold spiking neuron model, and real behavioral data from rats
were also analyzed. These frameworks give an insight into the analysis of real neuronal
networks.

Keywords: Granger causality; Granger causality index; Vector autoregressive model;
Neuronal networks; Synaptic weights estimation; Neuron Synaptic Index; Variable selec-
tion; Large-scale neuronal networks; High-dimensional data analysis.
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Chapter 1

Brief Introduction to Neurons

The aim of this chapter is to briefly introduce some elementary notions and terminolo-
gies of neuroscience such as, action potentials, chemical synapses, neurotransmitters and
postsynaptic potentials. We focus primarily on how neurons generate action potentials
and how individual neurons communicate with each other via synapses. Based on these
notions, we can then get into some interesting investigations on computational neuro-
science such as spike-sorting errors, synaptic weights estimation and neuronal network
reconstruction, etc. through the following chapters.

1.1 The neuron

Neurons are specialized cells that can receive and transmit signals. They are the building
blocks of the whole nervous system and are responsible for communicating information
throughout the body. There are approximately 100 billion neurons in human brain. Most
of them consist of three primary components: the cell body (also called soma), the axon,
and the dendrites. In general, dendrites are short and tree-like protrusion that extrude
from the cell body. The highly branched structures can help increase the surface area of
a neuron so that it can extensively receives signals transmitted by other neurons. The
received signals will then be passed and joined on the soma.

The axon originates from the end of the soma at a tapered region called the axon
hillock, where action potentials are generated and transmitted down the axon. The
generation of action potentials will be elaborated in the next section. Unlike dendrites,
axons can be very long. Almost all neurons have only one axon but there can be a
considerable number of branches on the axon terminal. A neuron with thousands of
branches on its axon terminal is not uncommon, and these branches usually spread closely
to the dendrites or soma of other neurons. Sometimes, the structural features described
above are not sufficient to distinguish dendrites from axons, then functional differences
should be considered. Axons conduct action potentials outward from the soma while
dendrites convert chemical signals into small electrical potentials and then transmit the
impulses inward to the soma. Details will be given in the following two sections.
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1.2 Action potentials

Neurons are surrounded by a membrane which possesses lots of ion channels that allow
some ions to pass through across the membrane. Some important ions involved in electro-
chemical messaging of neuron are: sodium (Na+), potassium (K+), calcium (Ca2+), and
chloride (Cl−). The membrane permeability causes different ion concentrations across
the membrane, we call this difference in charge between the interior and exterior of the
membrane a membrane potential. There are three primary types of ion channels: voltage-
gated channels (typically on the axon hillock and the axon), chemically gated channels
(typically on the dendrites), and leaky channels (by definition are always opened). The
potassium leaky channels make K+ cross through the membrane more easily than other
ions. In the cell, there are many negatively charged macromolecules such as nucleic acid,
proteins and ATP, these organic molecules cannot pass through the apolar layer of the
membrane. Therefore, positively charged ions outside the cell will be attracted toward
a negatively charged intracellular environment. Although the ions on both sides of the
membrane try to balance out, it cannot be made due to the following two main reasons:
(1) the membrane is selective, it allows only some kinds of ions to pass through. (2)
sodium-potassium pumps actively transit three Na+ out of the cell, and two K+ into the
cell simultaneously. Finally, under no external stimulus, when a steady state is reached on
the both sides of the membrane, the voltage difference between them is called the resting
membrane potential. The resting potential of a neuron is about −70 mV on average.

Action potentials are induced by different ions crossing the neuron membrane. First,
an excitatory stimulus makes little sodium channels to open, increasing the membrane
permeability to sodium. If some stimuli integrate and make the membrane potential to
reach about −55 mV, then all the sodium channels will open and a large number of
Na+ ions will rush into the cell. We call this critical change level a firing threshold of a
neuron and the electrical change a depolarization of the membrane. As Na+ ions rush in,
the membrane potential will move toward 0 mV and then keep going rapidly to about
+40 mV, but it will not exceed +60 mV, the equilibrium potential of Na+. Then the
potassium channels also open and the sodium channels close. More and more K+ ions
move out of the cell so that the membrane potential declines, falling to about −80 mV in
less than 2 milliseconds, but it will not exceed −90 mV, the equilibrium potential of K+.
This declining electrical change is called a repolarization of the membrane and is called a
hyperpolarization if it goes beyond the resting potential. Finally, the potassium channels
gradually close and the membrane potential will return to the resting potential slowly.
If the membrane potential does not reach the threshold value, no action potential will
occur. On the contrary, when the threshold level is reached, a fixed-size action potential
will always generate. This is so-called the ”all or none” principle. Here are two special
periods: the absolute refractory period and the relative refractory period. The former
comes from when the membrane potential hits +40 mV, all sodium channels are closed
and the potassium channels are opend. During this short period of time, no further
action potential can occur. The latter comes from when the membrane potential is more
negative than at rest. During this period, it needs more stimuli to create another action
potential.
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1.3 Synaptic transmissions

Any behavior control in our body involves the neural network with at least two neurons
inside. One neuron passes signals to another neuron through a synapse. Synapses are
functional conjunctions between neurons, which is usually formed by the axon terminal
of the input neuron (called presynaptic neuron) and the dendrite or soma of the target
neuron (called postsynaptic neuron). Synaptic transmission can be accomplished either
electrically or chemically. Electrical synapses conduct impulses faster and bidirection-
ally but are less modifiable than chemical synapses, which are the most common type
of synapse found in the neural system of higher vertebrates. In this section, we will fo-
cus mainly on chemical synapse. A typical neuron possesses thousands of synapses. The
synapse functions as a basic structure and place for messaging between neurons, integrat-
ing nerve information received from different sources and ensuring unidirectional nerve
conduction. All of these are essential for effective and efficient communications between
neurons.

The structure of a chemical synapse consists of three parts: the presynaptic axon
terminal, the postsynaptic cell and the synaptic cleft between them. The cleft precludes
the possibility of direct transmission of action potentials from the presynaptic membrane
to the postsynaptic membrane. The main function of the presynaptic part is to release
the so-called neurotransmitters, which act as messaging molecules, according to the ac-
tion potentials arrived. The released neurotransmitters then travel (diffuse) across the
synaptic cleft to the postsynaptic cell to alter its membrane potential by binding to some
receptor molecules specifically designate for that neurotransmitters. These can produce
either excitatory or inhibitory stimulations, depending on the properties of the receptor
molecules, i.e., on the types of opened ion channels on the membrane. If the response
results in the activation of sodium channels, making more Na+ ions move into the cell
then we call this local depolarization an excitatory postsynaptic potential (EPSP). On
the other hand, if the response results in the activation of chloride or potassium channels,
making more Cl− or K+ ions move into or move out of the cell, respectively, then we call
this local hyperpolarization an inhibitory postsynaptic potential (IPSP).

It is worth noting that a single EPSP is not sufficient enough for the postsynaptic
membrane to generate an action potential. Also, the density of voltage-gated sodium
channels is very low at the dendrites or soma, making it more difficult to do that. In fact,
the EPSPs and IPSPs are needed to be passively delivered to the axon hillock, where
the density of sodium channels is high, to facilitate the generation of action potentials.
However, in the passive delivery process, the amplitude of those PSPs decreases gradually
with the distances being passed. Therefore, some forms of summation are required; in
other words, those PSPs need to be added together at the axon hillock to surpass the
threshold. The firing threshold plays an important role as a filter so that noisy random
signals will not be transmitted so easily. Generally speaking, there are two types of
mechanisms for summation: the first one is ”temporal summation” and the other one is
”spatial summation”. Temporal summation means that single presynaptic neuron fires
frequently such that the released neurotransmitter can successively act on the postsynap-
tic membrane, causing the superposition of potentials. Spatial summation means that
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different presynaptic neurons, with their synapses located closely, fire simultaneously or
nearly simultaneously so that the PSPs can be superimposed after the passive delivery
over an extremely short distance.

In fact, not only the EPSP but the IPSP can take part in the summation process.
The IPSPs will cancel out the EPSPs, making the membrane potential farther below the
threshold, so that the initiation of an action potential in the postsynaptic neuron can be
prevented. The firing bebavior of a neuron usually depends on the stimuli from many
different input neurons. Inhibition, in general, plays an important role of regulating the
excitatory stimuli for the postsynaptic neuron to fire. Neurons add up these EPSPs and
IPSPs constantly in time and over different synapses, the net voltage at the axon hillock
determines whether an action potential should be initiated. All of the signals, both
excitatory and inhibitory, are transmitted from the input neurons and then integrated
at the axon hillock of the target neuron. This process of gathering information and
then making decision of neuron is called synaptic integration, which is so crucial for the
neurons to perform certain meaningful coordinated neuronal activities in the brain.
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Chapter 2

Effects of Spike Sorting Error

2.1 Introduction

In neuroscience research, it is important to identify information flow among multiple
neurons in the brain, according to the recorded neural activity data. A powerful method
for achieving this is the Granger causality (GC) which arose in economics after being
introduced by Wiener and Granger [27, 28, 69]. The GC is a time series inference (TSI)
type of method, proposes that if the prediction of one time series can be improved with
the knowledge of a second time series, then there is a causal influence from the second
time series to the first. This prediction is made by using the vector autoregressive (VAR)
model. In this model, if the variance of the prediction error of one time series at the
present time can be reduced by including the past values of another series, then the
latter is said to Granger-cause the former. This causality can be quantified by the so-
called GC Index (GCI) which can be used to determine whether there is any causal
interaction between time series. The GC was shown to be effective and has been widely
deployed in recent neuroscience research [7, 12–14, 71]. In addition to the time domain
GC, other versions of the GC (e.g., frequency, and time-frequency domain) have been
developed as well [3, 18]. The time domain formulation of GCI is briefly introduced in
the next section, and we refer the reader to an article by [8] for more details about the
GC.

Neurons emit action potentials (APs) that are known as spikes and play an impor-
tant role in communicating among cells. The temporal sequence of APs produced by a
neuron, which shows its own activity, is also known as a spike train. In multi-channel
recordings [9], the APs of neurons are detected and differentiated from background electri-
cal noise before single-unit spike trains are used to probe neural behaviors. This technical
procedure is called spike sorting. However, it is not easy to obtain spike train data that
fully agree with the AP because of noise, superimposed APs, and difficulties of differen-
tiating waveforms of APs from different neurons. Spike sorting often introduces unavoid-
able errors [19, 43]. These errors can roughly be divided into two types, false positives
(FPs) and false negatives (FNs). An FP means an error detection of an event that is not
a real spike (just an electrical noise) or is a spike from another neuron. Conversely, an
FN means that real spikes were not detected or were classified into groups of other neu-
rons. One may be interested in the question: ”How FPs and FNs affect the estimation of
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functional connectivity among neurons?”. This study answered this question analytically
and also via numerical simulations. The change in the GCI due to spike sorting errors
was derived analytically to form an explicit formula, and a direct discussion of the effects
of FPs and FNs is possible. Moreover, numerical simulations were used to verify the
analyses. We constructed three types of models for sorting errors: those with uniform,
random, and concentrative distributions. That is, errors occur uniformly, randomly, and
concentratively in spike trains. Changes in the GCI were computed as these types of
spike sorting errors were artificially added to the simulated spike trains, and the effects
on the directional interactions were also investigated.

Finally, it is worth noting that spike trains are non-equally spaced data and are
regarded as a point process. Interpolation or filtering is usually employed to convert
point processes to equally spaced time series. Previous studies on spike trains [37, 75]
proposed several methods to convert a time series from being non-equally spaced to
equally spaced. This study adopted the procedure of binning to convert spike trains into
time series data, which are suitable for GC analyses. Although the GCI between two
point processes has been directly defined in [38] recently, we still cannot abandon binning
because it reduces the complexity of analysis, and considers also the effect of temporal
summation of action potentials in the neuroscience.

The remanider of this chapter is organized as follows. Section 2 presents an analytic
formula based on a first order autoregression to show how error processes affect the GCI.
Section 3 presents some models for sorting errors and probes the proposed formula further
via numerical simulations. Section 4 presents a real data evaluation where the effects of
sorting error on the GCI are evaluated using real experimental data. Section 5 provides
some suggestions for spike sorting and the discussion.

We remark that the material of this chapter has been published in [61].

2.2 Modeling and analysis

Based on a first order autoregression, we derived an explicit formula for changes in the
GCI in terms of four parameters involving the error process. We also investigated the
influences of various types of errors on the GCI indicated by the proposed formula.

2.2.1 A short introduction to the GCI

Let x and y be two stationary time series with zero means. The first order linear autore-
gressive model for x and y is given by[

x(n)
y(n)

]
= A

[
x(n− 1)
y(n− 1)

]
+

[
ε(n)
η(n)

]
, (2.1)

where A is the model coefficient matrix, and the residuals ε and η are zero-mean uncor-
related white noises with covariance matrix Σ. Here the variances V ar(ε) and V ar(η)
are called prediction errors, which measure the accuracy of the autoregressive prediction.
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More specifically, V ar(η) measures the accuracy of the prediction of y(n) based on the
previous values x(n− 1) and y(n− 1).

Now consider the reduced model that excludes the time series variable x

y(n) = B y(n− 1) + ζ(n), (2.2)

where B is the corresponding model coefficient. The variance V ar(ζ) measures the ac-
curacy of the prediction of y(n) based only on its previous value y(n− 1). For η in (2.1)
and ζ in (2.2), if V ar(η) is significantly less than V ar(ζ) in some statistical sense, then
we say that x Granger-cause y. This causality can be quantified by the GCI from x to y
formulated as:

Fx→y = ln
V ar(ζ)

V ar(η)
. (2.3)

It is clear that Fx→y = 0 when V ar(η) = V ar(ζ), i.e., x has no causal influence on y,
and Fx→y > 0 when x Granger-cause y. Notice that Fx→y is nonnegative, i.e., V ar(η)
is bounded above by V ar(ζ), since the full model defined in (2.1) should have a better
prediction ability than the reduced model defined in (2.2). Finally, we note that the GCI
values should be checked for significance by using hypothesis testing, and more details of
the GCI can be found in [20,27,28].

2.2.2 An explicit formula

When inaccurate spike sorting occurs, the sorting errors can be regarded as a perturbed
error process. For simplicity, we assume that only the source process x has a sorting error
and the corresponding error process is denoted by δx. We can assume that δx is zero
mean and the model in (2.1) is perturbed as follows when δx is superposed on x:[

{x+ δx}(n)
y(n)

]
= Ã

[
{x+ δx}(n− 1)

y(n− 1)

]
+

[
ε̃(n)
η̃(n)

]
, (2.4)

where Ã is the corresponding model coefficient matrix, and the residuals ε̃ and η̃ have
the covariance matrix Σ̃. Let Sy := V ar(ζ), S := V ar(η), and S̃ := V ar(η̃). Since the
perturbed quantity δx is superposed only on x, the reduced models for (2.1) and (2.4)
are the same as (2.2). Then the original GCI from x to y and the perturbed GCI from
x+ δx to y are

F = ln
Sy
S

and F̃ = ln
Sy

S̃
, (2.5)

respectively. To investigate the perturbed GCI, we derived an explicit formula for F̃
in terms of four parameters involving δx which are ξ1 := E

(
δx21
)
, ξ2 := E

(
x1δx1

)
,

ξ3 := E
(
y2δx1

)
, and ξ4 := E

(
y1δx1

)
. Further denote X0 = E

(
x21
)
, Y0 = E

(
y21
)
,

Y1 = E
(
y1y2

)
, Z1 = E

(
x1y1

)
, and Z2 = E

(
x1y2

)
. We are now ready to present the

formula for F̃ .
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Proposition 1. In the situation described above, F̃ can be presented explicitly by
the following formula (for calculation see Appendix):

F̃ = ln
Sy

S + Θ
, Θ =

(
Sy − S

)
I, (2.6)

where

I =
1

Y0
(
X0 + ξ1 + 2ξ2

)
−
(
ξ4 + Z1

)2
×
{
Y0
(
X0 + ξ1 + 2ξ2

)
− 1

Sy−S

[
Y0
(
ξ3 + Z2

)2
+
(
Y0 − S

)(
ξ4 + Z1

)2 − 2Y1
(
ξ3 + Z2

)(
ξ4 + Z1

)]}
.

(2.7)

Note that since S+ Θ in (2.6) is bounded above by Sy, we have that Θ is upper bounded
by Sy − S, i.e., I has an upper bound 1.

We end this subsection by the following two remarks.

Remark 1. In the same situation of Proposition 1, the following inequalities hold:

Y0 ≥ Sy ≥ S and Y1 ≤ 0. (2.8)

According to (2.2), we have Y0 = V ar(y1) ≥ V ar(ζ) = Sy. The remainder Sy ≥ S just
follows by the reason that the prediction error of the reduced model in (2.4) is always less
than or equal to that of the full model in (2.1). The latter holds because of the stationary
assumption. If Y1 = E(y1y2) > 0, then y will not be stationary. Thus Y1 ≤ 0.

Remark 2. The following result can be obtained easily by using (2.5) and (2.6).

F̃ > F, if I < 0.

F̃ = F, if I = 0.

F̃ < F, if 0 < I < 1.

F̃ = 0, if I = 1.

(2.9)

2.2.3 Essential GCI factors

The formula defined by (2.6) and (2.7) is complicated but it reveals the intrinsic property
of the perturbed GCI, depending on the four factors ξ1, ξ2, ξ3 and ξ4 which, by the
definition, capture the main properties of error signals, namely, the spike sorting errors.
A systematic characterization of these parameters’ influences on the GCI would provide a
heuristic understanding of the effect of spike sorting error for researchers to make further
decisions. Thus, in this subsection we discuss Proposition 1 more by a total of five
different situations and relate each of them to a biological meaning.

We now present the following corollaries for investigating the term I defined in (2.7),
and this is equivalent to investigating the term F̃ in (2.6).
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Corollary 1 (ξ2 = ξ3 = ξ4 = 0). We start with the simple case in which the error process
δx is uncorrelated with the underlying processes x and y, i.e., ξ2 = ξ3 = ξ4 = 0. In this
case I can be simplified as follows:

I(ξ1) =
Y0ξ1

Y0ξ1 + [X0Y0 − Z2
1 ]
. (2.10)

The above equation shows that I increases as ξ1 increases, but it is bounded above by the
limit L := limξ1→∞ I(ξ1) = 1. Hence, by (2.6), the weakened GCI F̃ is bounded below

by limξ1→∞ F̃ (ξ1) = ln Sy

S+(Sy−S)L = ln Sy

Sy
= 0. In reality, this limit cannot be attained

because the variance ξ1 = E
(
δx21
)

cannot approach infinity. Thus, the GCI will never
vanish if the error process δx is uncorrelated with the underlying process x. We refer to
this corollary as FPs being composed of electrical noises or the spikes of other uncon-
nected neurons during spike sorting.

Corollary 2 (ξ2 < 0, ξ3 < 0, ξ4 < 0). Suppose the error process δx is negatively
correlated with the underlying processes x and y, i.e., ξ2, ξ3, and ξ4 are all negative. Since
the perturbed quantity δx is considered to be produced from inaccurate spike sorting,
the maximal negative quantity which δx can be is −x. Therefore, we have the following
constraint:

−X0 ≤ ξ2 < 0, −Z2 ≤ ξ3 < 0, −Z1 ≤ ξ4 < 0, (2.11)

and the equalities are attained when δx = −x.

Now, according to (2.7), (2.8), and (2.11), I is positive, increasing, and bounded
above by 1. In other words, Θ → Sy − S and F̃ → 0 as ξ1 → ∞ or

(
ξ2, ξ3, ξ4

)
→(

−X0,−Z2,−Z1

)
. This corollary is related to FNs in spike sorting.

Corollary 3 (ξ2 < 0, ξ3 < 0, ξ4 < 0 simplified). Suppose δx is correlated with the
underlying processes as in Corollary 2. If y is further completely induced by x, i.e., y
cannot explain itself (B = 0 in (2.2)), then we obtain Sy = Y0, Y1 = 0 and (2.7) can be
further simplified as:

I =
Y0
(
X0 + ξ1 + 2ξ2

)
−
(
ξ4 + Z1

)2 − Y0
Sy−S

(
ξ3 + Z2

)2
Y0
(
X0 + ξ1 + 2ξ2

)
−
(
ξ4 + Z1

)2 . (2.12)

Equation (2.12) still shows us that I → 1 as ξ1 → ∞. On the other hand, if ξ1 is
fixed and the negative correlation between x and δx increases (i.e.,

(
ξ2, ξ3, ξ4

)
decreases

simultaneously to
(
− X0,−Z2,−Z1

)
), then the value I increases to 1 because of the

quadratic convergence: (
ξ3 + Z2

)2 → 0. (2.13)

Note that when
(
ξ2, ξ3, ξ4

)
attains the lower bound

(
− X0,−Z2,−Z1

)
, i.e., δx = −x,

there is nothing left to analyze. Therefore, we do not consider this case.
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Corollary 4 (ξ2 = 0, ξ3 > 0, ξ4 > 0). Suppose the error process δx is positively corre-
lated with y, and is uncorrelated with x, i.e., ξ2 = 0, ξ3 > 0, and ξ4 > 0. Since I = 0
when ξ1 = ξ2 = ξ3 = ξ4 = 0, it is easy to conclude that, in this case, I is negative and
decreasing, i.e., F̃ > F and F̃ increases as ξ3 or ξ4 increase. We refer to this corollary as
FPs being composed of spikes of some connected neurons which are positively correlated
with the target neuron during spike sorting.

Corollary 5 (ξ2 > 0, ξ3 > 0, ξ4 > 0). Suppose the error process δx is positively correlated
with both x and y, i.e., ξ2 > 0, ξ3 > 0, and ξ4 > 0. Since I is increasing in ξ2, we know
that F̃ is then decreasing in ξ2. Therefore, F̃ in this case exhibits the same behavior as
that in Corollary 4 if

(
ξ3, ξ4

)
dominates ξ2; but F̃ is decreasing if ξ2 dominates

(
ξ3, ξ4

)
. We

refer to this corollary as FPs being composed of spikes of some connected neurons which
are positively correlated with both of source and target neurons during spike sorting.

The results of above five corollaries are schematically summarized in Table 2.1.

Table 2.1: A schematic summary of Corollaries 1–5. The factors ξi, i = 1, 2, 3, 4 and error
process δx are described in Section 2.2. + (−) stands for positive (negative) sign. FP
(FN) stands for false positive (negative). ↑ (↓) stands for increasing (decreasing).

ξ2 ξ3 ξ4 Effects on the GCI Type Interpretations on δx
0 0 0 GCI ↓ as ξ1 ↑ FP Electrical noises or

spikes of unconnected neurons.
− − − GCI ↓ as ξ1 ↑ FN Spike missing.
0 + + GCI ↑ as ξ3 ↑ or ξ4 ↑ FP Connected neurons which are

positively correlated with
the target neuron.

+ + + GCI ↑ if (ξ3,ξ4) dominates ξ2
GCI ↓ if ξ2 dominates (ξ3,ξ4)

FP Connected neurons which are
positively correlated with
both of source and target neurons.

2.2.4 GCI vs. variance reduction

Because 0 ≤ S ≤ Sy, we set S = (1− k)Sy with 0 ≤ k ≤ 1 and the GCI in (2.5) becomes

F = ln
Sy

(1− k)Sy
= − ln(1− k). (2.14)

Next, relate F and k through k = 1 − exp(−F ). Since Sy − S = kSy, k =
(
Sy − S

)
/Sy

represents the percentage of variance reduction. More precisely, it represents the relative
decrease in prediction errors from the reduced model (2.2) to the full model (2.1). For
example, k = 0 means no (0%) variance reduction, and the GCI is equal to zero. On
the contrary, k = 1 means a total (100%) variance reduction, and the GCI is equal to
infinity. Figure 2.1 shows how the GCI relates to k, and it is almost totally reduced when
the GCI is equal to 5.
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Figure 2.1: The relationship between the Granger Causality Index (GCI) and k. This
transforms GCI values to the corresponding percentage of variance reduction in the resid-
ual noise process.

2.3 Simulation study

Here, we present some models for sorting errors and further probe formula (2.7) via nu-
merical simulations. For the FP case, we first consider that FPs are made up of electrical
noises or spikes of unconnected neurons. Spikes of connected neurons are considered in
Section 2.3.4.

2.3.1 Models

We first construct a point process X =
{
p1, p2, . . . , pN

}
generated by a Poisson process

with rate λ in the time interval [0, T ], where N is the total number of points. The
second point process Y =

{
q1, q2, . . . , qN

}
is then generated by Y = X+N

(
m,σ

)
, where

N
(
m,σ

)
is a normal random variable with mean m and standard deviation σ. More

precisely, qi = pi + N
(
m,σ

)
, i = 1, . . . , N . The point process Y presents a time lag m

with respect to X if m > 0 and σ = 0. This study only considers m > 0 and σ > 0.

Spike sorting errors include two types: fake (FP) and missing (FN) spike events. The
fake spike event is an erroneous detection of an event that is not a real spike or is a
spike from another neuron. Conversely, a missing spike event means that spikes were not
detected or were classified into groups of other neurons. Therefore, the fake spike case
can be regarded as adding extra points to a point process. This type of error is denoted
by ”A-type”. The missing spike case can be regarded as removing some points from a
point process, and is denoted by ”R-type”. Forms of the addition or removal of points are
considered for uniform, random, and concentrative distributions. The number of fake or
missing spike events is rN , where r(= p%) is the ratio of fake or missing points compared
to the original spike train. The following explains the generation of these types in detail.

Uniform-partition addition (PA) model: The extra points
{
p̃i : 1 ≤ i ≤ rN

}
on the time interval [0, T ] form a uniform partition of [0, T ]. More precisely, p̃i =

11



i∆t, where ∆t = T
rN−1 .

Random-uniform addition (UA) model: The extra points p̃i, i = 1, . . . , rN ,
on the time interval are generated from a uniform distribution U

(
[0, T ]

)
random

variable.

Random-normal addition (NA) model: The extra points p̃i, i = 1, . . . , rN , on
the time interval are generated from a normal distribution N

(
T/2, σNA

)
random

variable. The standard deviation parameter σNA represents different degrees of
concentration.

Uniform-partition removal (PR) model: A set of reference points
{
p̃j : 1 ≤

j ≤ rN
}

, which is a uniform partition of [0, T ] was used to remove spike events
from

{
pi : 1 ≤ i ≤ N

}
. First, fix p̃j and then remove the point that is closest to p̃j.

Random-uniform removal (UR) model: Points in
{
pi : 1 ≤ i ≤ N

}
are

randomly removed using a discrete uniform Ud
(
1, N

)
random variable, i.e., all points

have the same probability of being removed.

Middle-succession removal (SR) model: In this model, the removed points are
successive and located near the center T/2 of the time interval [0, T ]. The number
of spikes is rN .

We note that sorting errors only occur in the source process X, and Y is assumed to be
inerrable.

2.3.2 Setup

Set the parameters, λ = 2, T = 100, m = 0.1 for the rate of the Poisson process, the total
time, and the time lag, respectively. To apply autoregressive modeling, we convert point
processes

{
pi : 1 ≤ i ≤ N

}
and

{
qi : 1 ≤ i ≤ N

}
to time series through the procedure

of binning with the bin size as the time lag m. Results are obtained from the average
of 100 simulations for each random case at fixed error percentage r. To investigate the
effects of errors on the GCI, we observe the results from various r, σ, and σNA.

2.3.3 Simulation results

We note that the simulations and the corresponding results are related to Corollaries 1,
2, and 3 of Section 2.2.3.

A-type vs. R-type

Figure 2.2(a) shows the results for experiment 1 in which σ = 0.02, σNA = T/8, and the
error percentage increased by 0.1. In this figure, the GCI of the SR model decreases the
fastest among all of the models as r increases. All R-type errors cause information loss
and greatly weaken the GCI when the error percentage increases. If r = 1, the underlying
signal is totally destroyed by the errors, and the causality is undetermined. The PA model
produces the largest GCI for a fixed r. Figure 2.2(a) also shows that A-Type GCIs are
greater than R-Type GCIs. However, this phenomenon is not always valid. The error
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in the NA model is uncorrelated with the signal and weakens the GCI more than any of
the R-Type models when σNA is small. Figure 2.2(b) shows that a highly non-stationary
process can average out much more underlying causality than the others, for the case of
σNA = T/64 in the NA model.
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(d) Experiment 3
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Figure 2.2: (a) Simulation results of Experiment 1, in which the parameter settings were
λ = 2, T = 100, m = 0.1, σ = 0.02. (b) Simulation results of a much more concentrative
normal, in which the parameter settings were λ = 2, T = 100, m = 0.1, σ = 0.02, and
σNA = T/64. (c) Simulation results of Experiment 2, in which the parameter settings
were λ = 2, T = 100, m = 0.1, σ = 0.04. (d) Simulation results of Experiment 3, in which
the parameter settings were λ = 2, T = 100, m = 0.1, σ = 0.06. The error percentages r
were all 0 ∼ 0.9, and increased by 0.1.
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Standard deviation factor σ

We now investigate the effects of the standard deviation σ on GCIs. Figure 2.2(c) and
2.2(d) show the results for experiments 2 and 3 in which parameter σ is 0.04 and 0.06,
respectively. Observations in Figure 2.2(a), 2.2(c), and 2.2(d) show that the behaviors of
the profiles with σ = 0.04, 0.06 closely resemble the behavior of the profile with σ = 0.02.
In the PA and PR models, let F denote the GCI value without a sorting error (r = 0), and
F̃ (r) denote the GCI value with sorting error of error percentage r. Table 2.2 presents
the relative errors of the GCI for r from 0.1 to 0.9 of the PA and PR models in the three
experiments, where

Relative error(r) :=
F̃ (r)− F

F
× 100%.

Table 2.2 shows that Experiment 3 had the flattest PA-curve and PR-curve of the three
experiments, and the underlying causality of the PA models were all around 50% off at
r = 0.9 because the signal to noise ratio

(
SNR = V ar(x)

V ar(δx)

)
was close to 1. Although

they were all around 50% off, the corresponding decreases in the percentage of variance
reduction are greatly differed, and this can be seen from Figure 2.1. In the PA model,
the three F values corresponding to the three experiments were 1.24, 0.64, and 0.38, and
the corresponding F̃ (0.9) were 0.71, 0.33, and 0.18, respectively. Equation (2.14) can
compute the corresponding relative decreases in the percentage of variance reduction,
which were 28.17%, 40.89%, and 46.85%, respectively.

Table 2.2: Relative errors, F̃ (r)−F
F
× 100%, of GCI for r = 0.1 ∼ 0.9 of the PA and PR

models in the three experiments.

Relative errors (%) of the PA model
Experiment r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9
1(σ = 0.02) -16.46 -27.24 -35.29 -41.48 -46.26 -50.26 -53.43 -55.78 -57.60
2(σ = 0.04) -12.27 -21.87 -29.41 -34.36 -39.84 -42.63 -46.28 -48.93 -51.20
3(σ = 0.06) -11.59 -19.78 -26.99 -32.13 -36.63 -40.89 -43.42 -46.29 -48.41

Relative errors (%) of the PR model
Experiment r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9
1(σ = 0.02) -17.10 -30.16 -41.89 -51.31 -59.78 -68.60 -75.86 -84.02 -92.07
2(σ = 0.04) -12.64 -22.71 -32.74 -41.82 -50.63 -59.24 -68.72 -78.04 -88.96
3(σ = 0.06) -11.58 -19.21 -27.60 -37.45 -47.44 -54.15 -65.07 -75.34 -87.68

Explanation of the GCI curves

We now discuss the behaviors of the curves in Figure 2.2(a). Because A-type error
processes (δx) are uncorrelated with the underlying process (x), curves of the PA, UA,
and NA models can be analyzed and directly explained by (2.6) and (2.10). These three
curves decrease as the size of the errors (ξ1) increases. They reach zero only when the
error size is infinity, which is actually unfeasible. Therefore, these curves slowly decrease
and never reach zero. In other words, the underlying causality remains.
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Moreover, the PA-curve is above the UA-curve, and the UA-curve is above the NA-
curve. This is because the NA model has the largest error size, followed by the UA model
and the PA model at the same error percentage. On the other hand, error processes of
the PR, UR, and SR models are correlated with the underlying process, and (2.12) is
used instead of (2.10) since ξ2, ξ3, and ξ4 are nonzero.

With approximately the same error size, these curves decrease much more quickly
than the uncorrelated case because of the negative correlations. Unlike the former, these
curves almost reach zero at the error percentage r = 0.9. In addition, the PR-curve is
above the UR-curve, and the UR-curve is above the SR-curve. This is because the SR
model has the largest error size, followed by the UR and PR models at the same error
percentage.

We now discuss the behaviors of the curves in Figure 2.2(b), which shows that A-
type errors are not always better than R-type errors. GCI values of the NA model
with σNA = T/64 are smaller than those of the SR model when the error percentage is
between r = 0.2 and r = 0.6. To see what occurred, we computed ξ1 to ξ4 at each error
percentage for these two cases, and results are respectively shown in Figure 2.3(a) and
2.3(b). Comparing these two panels indicates that (i) ξ1 of the NA model is much larger
than that of the SR model. According to (2.12), the GCI of the NA model is smaller than
that of the SR model. (ii) The SR model has large ξ2 and ξ3. According to (2.13), the
GCI of the SR model is significantly smaller than that of the NA model when r is quite
large, even though the ξ1 of the SR model is still relatively smaller than that of the NA
model. Figure 2.2(b) verifies this analysis showing that the error size of the NA model
dominates the negative correlation of the SR model when the error percentage is between
r = 0.2 and r = 0.6. Contrarily, the negative correlation of the SR model dominates
the error size of the NA model when r > 0.6. Therefore, it is necessary to integrate the
error size and the negative correlation to identify the behavior of the GCI, and the reason
is that the error size of the NA model is much larger than that of the SR model when
0 ≤ r ≤ 0.6.

2.3.4 Supplementary simulations of FPs

We now present supplementary simulations of FPs by considering the case when FPs are
composed of connected neurons. There are no supplementary simulations for FNs since
they have only one situation as discussed in Corollary 2, and they were simulated in
preceding work. The simulations here are devoted to Corollaries 4 and 5 of Section 2.2.3.
The following explain the simulations in detail and the model parameters are fixed at
λ = 2, T = 100, m = 0.1, and σ = 0.02.

Experiment A: Suppose X and Z are two independent Poisson processes with
equal rate λ in [0, T ], where N is the total number of points of X. Let Y be
another point process generated by Y = Z +N

(
m,σ

)
. Hence, we have that Y is

induced by Z, and X is independent of both Y and Z. Then rN points of Z are
randomly added to X, where r denotes the error percentage. After binning with
bin size m, the GCI from X to Y as a function of r and the corresponding ξ’s are
shown in Figure 2.4(a) and 2.4(b). This experiment considers the situation that
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(a) The ξ1 to ξ4 of NA model
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Figure 2.3: (a) ξ1 to ξ4 of the NA model, in which the parameter settings were λ = 2,
T = 100, m = 0.1, σ = 0.02, σNA = T/64. (b) ξ1 to ξ4 of the SR model, in which the
parameter settings were λ = 2, T = 100, m = 0.1, σ = 0.02. The error percentages r
were both 0 ∼ 0.9, and increased by 0.1.

FPs are composed of spikes of connected neurons which are positively correlated
with target neurons. Note that the true causality between X and Y is uncorrelated
(GCI= 0), which means that the relationship between neurons may be erroneously
identified when a FP occurs during spike sorting.

Experiment B: Here we consider another situation that Y is induced by both
X and Z, that is, Y = {X + N

(
m,σ

)
} ∪ {Z + N

(
m,σ

)
}, where X and Z are

independent Poisson processes with equal rate λ in [0, T ]. Then rN points of Z are
randomly added to X. After binning, the GCI from X to Y and the corresponding
ξ’s are shown in Figure 2.4(a) and 2.4(c). The result shows that the relationship is
correctly identified, but the strength (GCI) is overestimated. Experiments A and B
enlighten that the risk of an erroneous causal identification should be estimated by
two parts: the relationship (causal or noncausal) and the strength (the magnitude
of the GCI).

Experiment C: Suppose Z is a Poisson processes with rate λ in [0, T ]. Let X and
Y be point processes generated by X = Z+N

(
m,σ

)
and Y = X+N

(
m,σ

)
, i.e., X

is induced by Z, and Y is induced by X. Then rN points of Z are randomly added
to X. After binning, the GCI from X to Y and the corresponding ξ’s are shown in
Figure 2.4(a) and 2.4(d). The result shows that the effect of the positive-correlation
(ξ2 > 0) between Z and X dominates the effect of the positive-correlation (ξ3 > 0,
ξ4 > 0) between Z and Y ; thus the GCI decreases. This experiment is devoted to
Corollary 5 of Section 2.2.3.
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Figure 2.4: (a) Simulation results of Experiment A–C for FP. (b) ξ1 to ξ4 of the Experi-
ment A. (c) ξ1 to ξ4 of the Experiment B. (d) ξ1 to ξ4 of the Experiment C.

2.3.5 Simulation for threshold detection

Spike sorting consists of two parts: AP detection and AP classification, which are based
on thresholding and clustering methods, respectively. Here we discuss the relationship
between the GCI value and the detecting threshold via simulation. The classification
part will be discussed in Section 4 by using real experimental data.

We simulate a sequence of 100 APs, denoted by A, having fixed interspike interval
(ISI) length as shown in Figure 2.5(a). Then we add an independent white noise toA with
SNR = 0.8 for the background noise. Denoting the standard deviation of the observed
noisy data by τ , Figure 2.5(b) and 2.5(c) show the detected spikes with threshold values
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being 2.5τ and 3.0τ , respectively. It is easy to see that a lower threshold is tending to
result in FPs of spike-detection and a higher one is tending to result in FNs. Now, let
pX be the point process obtained from perfect-detection, i.e., pX coincides with A. Let
pY = pX +N

(
0.1, 0.02

)
represent the point process obtained from a causal sequence of

APs, say B. After binning with bin width 0.1, we can infer the causal relationship between
these two sequences of APs, A and B, by computing the GCI from the binned data of
pX to that of pY . To be consistent with our analyses, the errors created by threshold-
detection will be put only on the source sequence A. We are now ready to investigate
the relationship between GCI value and threshold value by changing the threshold from
1.5τ to 3.5τ , and it is shown in Figure 2.6(a). The result shows that 2.5τ performs the
best (i.e., obtaining the largest GCI value), since we know that B is induced by A. To
investigate more deeply into this result, numbers of FPs and FNs are further shown in
Figure 2.6(b) and 2.6(c), and these results give us the following findings: (i) Number of
FPs increases as threshold value decreases. (ii) Number of FNs increases as threshold
value increases. (iii) FPs affect GCI less than FNs since the number of FPs (> 100 at
1.5τ) is much larger than that of FNs (> 60 at 3.5τ) and the decreasing rate (slope) of
GCI in [2.5, 3.5] (= 0.4270) is larger than the increasing rate (slop) of GCI in [1.5, 2.5]
(= 0.3674). (iv) As a result of (iii), we can conclude that choosing a threshold lower than
the optimal (= 2.5τ) is better and preserves more information than choosing a threshold
higher than the optimal.

We now discuss in details the result of this simulation through the following four
remarks: (1) For a large threshold, the sorting error is only composed of FNs, without
FPs. Therefore the GCI increases as threshold decreases. When the threshold decreases
to certain value, the error of FPs occurs. The GCI will reach the maximum and then
decreases as the threshold decreases to 0. This result contributes the explanation of the
effects of FPs and FNs on the GCI. (2) We can conclude that variations of the GCI are
determined by which one of FP and FN to be the dominate sorting error and the total
number of FPs and FNs as well for a fixed threshold. (3) Although we cannot choose
the optimal threshold in real experiments, (iv) is still useful and it gives a criterion for
designing methods of choice of an optimal threshold. (4) Researchers may imitate the
procedure of the simulation by using their own A and background noise to determine the
optimal threshold after examining the number of FPs and FNs.

2.4 Real data analysis

Here we design two sorting procedures in real operation and then evaluate the effect of
sorting errors on the GCI using real experimental data.

2.4.1 Experimental setup

Neuronal spikes were recorded from the ventroposterior medial (VPM) nucleus of the
thalamus and are the same data set used in our previous study [67]. The single-unit
recording method is described in Tseng’s report (2012). Briefly, spikes were amplified
(7000 32,000-fold), filtered (0.25 13 kHz), and digitized at 40 kHz. Recording was per-
formed while a rat was awake. Extracellular single units were recorded in real time
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Figure 2.5: (a) The first 10 APs of the underlying AP sequence A. (b) The detected
spikes (marked by ◦) with threshold value 2.5τ . (c) The detected spikes (marked by ◦)
with threshold value 3.0τ .

using time-voltage windows and a principle component-based template-matching algo-
rithm (Sort Client, Plexon). Waveforms were saved and re-sorted using Offline Sorter
(Plexon), based on principle-component clustering, with a user-defined template. The
sample we used here contained 2 or more distinguishable clusters. To evaluate the effect
of sorting errors on the GCI, various percentage errors were created from 20%, 40%, 60%,
and 80% less or more than the data set of a complete cluster. Shrinkage or expansion of
the sample size was calculated based on the difference between a waveform of a neuron
and a template, computed by the Offline Sorter (tolerance fit function). Note that cluster
expansion included the other cluster of a neuron or noises. We used 6 neurons with an
averaged firing frequency of 0.199 Hz, and therefore

(
6
2

)
×2 = 30 neuron pairs (i.e., GCIs)

were derived ((Neuroni,Neuronj) i = 1, . . . , 6 j 6= i). Being consistent with our analy-
ses, the errors created by shrinkage or expansion were put only on the source (Neuroni).
In the sequel, we use the FN and FP-procedures to respectively represent shrinkage and
expansion operations.
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Figure 2.6: (a) The relationship between GCI value and threshold value by changing the
threshold from 1.5τ to 3.5τ . (b) Number of FPs increases as threshold value decreases.
(c) Number of FNs increases as threshold value increases.

2.4.2 Experimental Results

From these real data we found three GCI patterns which frequently appeared under the
above-mentioned sorting procedures, one of them was found under the FN-procedure,
and the other two were found under the FP-procedure. These patterns are explained in
detail.

FN-decrease: The GCIs of all the neuron pairs (24 of 30 pairs) decreased as the
error percentage increased under the FN-procedure (Figure 2.7(a)) except pairs with
a zero GCI (6 of 30 pairs). The four corresponding ξ’s are shown in Figure 2.7(b),
and it shows that the error process induced by the FN-procedure was negatively
correlated with processes of both the source and target neurons; thus the GCI
decreased (resembling that in Figure 2.3(b)).

FP-decrease: The GCIs of neuron pairs (6 of 30 pairs) decreased as the error per-
centage increased under the FP-procedure (Figure 2.7(a)) and the four correspond-
ing ξ’s of this pattern (Figure 2.7(c)) show that the error process was positively
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correlated with process of the source neuron and was uncorrelated with that of the
target neuron. The GCI decreased because the effect of ξ2 dominated the effect
of ξ3 and ξ4. In other words, the error process was composed of spikes of some
connected neurons which were positively correlated with the source neuron.

FP-increase: The GCIs of neuron pairs (16 of 30 pairs) increased as the error
percentage increased under the FP-procedure (Figure 2.7(a)) and the four corre-
sponding ξ’s of this pattern (Figure 2.7(d)) show that the error process was posi-
tively correlated with processes of both the source and target neurons. The GCI
increased because the effect of ξ3 and ξ4 dominated the effect of ξ2. In other words,
the error process was composed of spikes of some connected neurons which were
strongly correlated with the target neuron.

Finally, we note that there are 5 neuron pairs with a zero GCI, and 3 neuron pairs
with unchanged GCIs under the FP-procedure.

2.5 Discussion

Because spike sorting errors are almost unavoidable, this study was devoted to inves-
tigating how sorting errors affect the identification of information flow among neurons.
The analyses of this chapter allowed us to directly discuss the effects of FPs and FNs
through the proposed formula, and the results also revealed that they do not have the
same effect on spike sorting. In Section 2, we derived an analytic formula (2.7) in terms
of factors ξ1 to ξ4, and this formula can be used, when incorporating (2.6), to obtain
how the GCI changes according to the error signal. Under the FN type of sorting error,
we know the error process is negatively correlated with processes of both the source and
target neurons; thus the GCI will always be underestimated. On the other hand, under
the FP type of sorting error, the GCI may be underestimated or overestimated depending
on the error process. If the error process is only composed of electrical noise or spikes
of other unconnected neurons, the GCI will be underestimated, but in general, the ac-
curacy is better than cases of the FN type. If the error process is composed of spikes of
some positively correlated neurons, then the GCI will be overestimated, and a noncausal
neuron pair may be mistaken for a causal pair.

From the perspective of the GC, we provide some suggestions for spike sorting. (i)
Missing successive spikes should be avoided as far as possible since this mostly weakens
the GCI (Figure 2.2(a), SR model). (ii) A-type errors, which are concentratively added,
may weaken the underlying GCI more than R-type errors (Figure 2.2(b), NA model).
(iii) During spike detection, choosing a threshold lower than the optimal is better than
choosing a threshold higher than the optimal because fake spike events (electrical noise)
affect the GCI less than missing spike events (Figure 2.2(a),(c),(d), and Figure 2.6).
(iv) During spike classification, cluster shrinkage from the optimal cluster is better than
cluster expansion from the optimal because FPs may result in overestimating the GCI
and mistaking a noncausal neuron pair for a causal pair (Figure 2.4(a), Experiment A).
FNs can only result in an underestimation of the GCI (Figure 2.7(a), FN-decrease), and
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Figure 2.7: (a) Three kinds of Granger Causality Index (GCI) patterns which frequently
appeared in real experimental data. (b) ξ1 to ξ4 of the false-negative (FN)-decrease
pattern. (c) ξ1 to ξ4 of the false-positive (FP)-decrease pattern. (d) ξ1 to ξ4 of the
FP-increase pattern.

this is a relatively conservative and secure strategy for scientific research. For (i) and (ii),
in fact, we really cannot avoid missing spikes successively or adding spikes concentratively
in the analysis of real data. However, our suggestions still are useful in some cases when
recordings are made in the brain regions that neurons are known with complementary
intermittence discharge. For example, since the inspiratory-related and expiratory-related
neurons coexist in the dorsal and ventral respiratory group [65], and the firing of these two
types of neurons are complementary intermittence, so successive missing or concentrative
adding of spikes after sorting may occur. We should examine the time series of spike trains
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to ensure if the patterns of complementary intermittence are confused after sorting, and
to infer which modification would be made when GCIs are calculated. For (iii) and (iv),
these two conclusions are just opposite to each other. That is, in spike detection, the
FPs are better than the FNs, because the FPs consist of only electrical noises. But in
spike classification, the FNs are better than the FPs because the FPs consist of not only
electrical noises but also maybe some causal neurons. Finally we note that the way of
choosing an optimal threshold or cluster size varies from case to case, since it depends
on the sorting method used, and the experimental situation you met. This study is just
trying to give a general concept for choosing a better threshold and cluster size.

The results of this study are based on restrictive situations. The analytic formula
was obtained from a first order autoregressive model, and the error processes were only
superposed on the source process. However, based on these simplifications, the intrinsic
properties of the GCI can be seen more clearly than in complete but more complicated
situations. Although there are still a lot of concerns on the technical aspect of applying
the GCI to determine the relationship among neurons in practice, researchers may be
interested in understanding intuitively the effect of spike sorting error before these tech-
niques are really applied, and this is exactly what this chapter wants to provide. Real
neuronal networks are much more complex than the simplified assumptions of the anal-
yses and simple models of the simulation. The procedures presented in this study need
further development to approach the complex reality. The well-established framework of
information theory, for example, might be employed to provide more-credible statistical
inferences about true causality in the future.
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Chapter 3

Synaptic Weights Estimation

3.1 Introduction

Granger causality (GC) [27, 28] has been shown to be an effective method for analyzing
the causal relationship between continuous-valued neural activity data [3,8,13,18] and has
been widely deployed in recent neuroscience research. To further understand how neurons
cooperate to generate specific brain functions, several extended GC methods were also
proposed for identifying directional interactions between neurons through multiple spike
trains [38,41,51,57,74]. Being the fundamental knowledge used in this chapter, the time
domain GC analysis will be briefly introduced in the next section and the readers are
referred to an article by Barnett and Seth [4] for more details.

The term synaptic weight is widely used in neural network research and typically refer
to the coupling strength of a connection between two nodes in the network. A large
synaptic weight usually means that a large signal (i.e., high-frequency spikes) from the
pre-synaptic neuron can result in a large signal of the post-synaptic one. Therefore, in
neuroscience and biology, it can also be interpreted as the amount of influence of one
neuron has on the firing activity of another.

The spikes of a pre-synaptic neuron are carried by the axon, which will release exci-
tatory or inhibitory neurotransmitter into the synapse. When the post-synaptic neuron
receives the neurotransmitter, an excitatory post-synaptic potential (EPSP) or an in-
hibitory post-synaptic potential (IPSP) is then induced to temporarily depolarize or hy-
perpolarize the membrane potential. An EPSP makes the neuron more likely to generate
an action potential (AP), while an IPSP makes the neuron to do the opposite. However,
a single EPSP is not sufficient for the membrane to generate an AP, temporal or spatial
summations are required. This means that the firing pattern of the post-synaptic neuron
is generally not a direct consequence of the influence of a single pre-synaptic neuron; but
a weighted result of the effects of several pre-synaptic neurons with possibly different
synaptic weights. Furthermore, IPSPs will diminish EPSPs, playing a much more cru-
cial role of determining whether or not an AP generation will occur at the post-synaptic
membrane.

The GC analysis has emerged as a powerful analytical method for estimating the
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causal strength of complex networks [58, 59]. However, the effects of excitations and
inhibitions could not be differentiated in its original form. Based on the GC, we pro-
pose a computational algorithm (presented in Section 3.2.3) under the assumption of
best linear predictor (BLP) for analyzing neuronal networks by estimating the synaptic
weights among them. The idea of the mathematical assumption BLP is that the weighted
voltage-fluctuation of the pre-synaptic neurons should be the best linear explanation for
the voltage-fluctuation of the post-synaptic neuron among the network. Using this inter-
pretation, the GC analysis can be extended to measure both excitatory and inhibitory
effects between neurons without too much extra computational complexity. The appro-
priateness of the BLP assumption was examined by three sorts of simulated networks:
those with linear, almost linear, and nonlinear network structures. To illustrate the ap-
plication of the proposed method, real spike trains from the anterior cingulate cortex
(ACC) and the striatum (STR) were analyzed.

It is worth noting that spike trains are non-equally spaced data and are regarded as
being from a point process. Filtering is usually required for converting them to equally
spaced time series for further GC analyses [57]. This study adopted the Gaussian kernel
filtering or binning (depending on the situation) to convert spike trains into time series
data for the following three main reasons: (1) it reduces the complexity of analysis, and
considers also the effect of temporal summation of action potentials, (2) under suitable
preprocessing, even short, sparse spike trains can be converted, so that the standard
autoregression modeling can be applied [75], (3) most important of all, spike trains can
be filtered to form close approximations to the firing rates or the voltage-fluctuations of
the underlying neurons [42].

The rest of this chapter is organized as follows. In Section 2, we briefly introduce
the so-called Granger causality index, and then extend it to measure both excitatory
and inhibitory effects between network nodes by using the BLP assumption. Section 3
presents three network models to ensure the appropriateness of the proposed algorithm.
In Section 4, we apply the algorithm to analyze real spike train data. Section 5 provides
some discussion about the results obtained from Section 3–4, shortcomings of the method,
and related future works.

3.2 Modeling and analysis

Based on the framework of Granger causality analysis and a BLP interpretation of synap-
tic weights, we propose a procedure for weights estimation and define a synaptic measure
between neuronal time series using the estimated weights.
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3.2.1 An introduction to the GC

Let X = (x1, x2, . . . , xn) be a stationary n-dimensional time series process with zero
mean. The p-th order linear autoregressive model for X is given by

x1t =

p∑
r=1

a1,1r x1t−r + · · ·+
p∑
r=1

a1,nr xnt−r + ε1t

x2t =

p∑
r=1

a2,1r x1t−r + · · ·+
p∑
r=1

a2,nr xnt−r + ε2t

...

xnt =

p∑
r=1

an,1r x1t−r + · · ·+
p∑
r=1

an,nr xnt−r + εnt ,

(3.1)

where ai,jr is the projection coefficient from the i-th time series onto the j-th time series at
time lag r, representing the coupling strength from node j to node i in the network. The
residuals ε1, ε2, . . . , εn are zero-mean uncorrelated white noises with covariance matrix
Σ. The diagonal entries {Σii = V ar(εi), i = 1, . . . , n} measure the accuracy of the
autoregressive prediction to each node based on the information from time stamps t− 1
to t− p.

To see whether the information contained in time series xj is useful in explaining the
state of time series xi, namely, the importance of node j to node i, we can exclude the
time series variable xj from (4.7) to obtain a reduced 1 (n−1)-dimensional autoregressive
model with residual series ηi,j of xi and corresponding prediction error Γjii = V ar(ηi,j).
Here Γjii measures the accuracy of the prediction of xi based only on the previous values
in time series {x1, . . . , xj−1, xj+1, . . . , xn}. If Σii in (4.7) is significantly less than Γjii in
the reduced model in some suitable statistical sense, then we say that xj Granger-cause
xi. This causality can be quantified by the GC index from xj to xi formulated as:

Fj→i = ln
Γjii
Σii

. (3.2)

It is clear that Fj→i = 0 when Γjii = Σii, i.e., xj has no causal influence on xi, and
Fj→i > 0 when xj Granger-cause xi. Notice that Fj→i is defined only for j 6= i and
is always nonnegative, i.e., Σii is bounded above by Γjii, since the full model defined
in (4.7) should fit the data better than the reduced model. Finally, we note that the
GC index (4.8) is significant if the corresponding coefficients ai,jr are jointly significantly
different from zero. This can be assessed via an F -test on the null hypothesis that ai,jr
are zero [29,60]. The projection coefficients ai,jr and prediction errors Σii can be obtained

1The i−th equation of the reduced model reads xit =

p∑
r=1

bi,1r x1t−r+· · ·+
p∑

r=1

bi,j−1
r xj−1

t−r +

p∑
r=1

bi,j+1
r xj+1

t−r+

· · ·+
p∑

r=1

bi,nr xnt−r + ηi,jt , where the b’s are the corresponding projection coefficients.
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by solving the Yule-Walker equation [39] and an efficient model order can be determined
using the Akaike Information Criterion (AIC):

AIC(p) = 2 log(det(Σ)) +
2n2p

T
, (3.3)

where T is the total length of the time series. More information about the GC can be
found in the author’s previous work [61] and also [4, 13,20].

3.2.2 Synaptic weights estimation

Now, consider the multivariate zero-mean time series, X = (x1, x2, . . . , xn), consisting of
the trajectories of membrane voltage of n distinct neurons. Suppose that the i-th neuron
is triggered by some other k neurons in the network, say {i1, i2, . . . , ik}-th neurons, with
synaptic weights {αi1, αi2, . . . , αik}. For convenience, we assume that 1 ≤ k := k(i) ≤ n−1.
The case k = 0 means that the i-th neuron is not triggered by others, thus is relatively
easy to deal with. The weights are assumed to be nonzero, if some αis is zero, then we
can just remove the corresponding index is from the trigger set. Positive and negative
weights represent excitatory and inhibitory influences on the i-th neuron, respectively.

In general, the trigger set Ii := {i1, i2, . . . , ik} and the corresponding weights αi :=
{αi1, αi2, . . . , αik} in the network can not be identified and estimated easily due to the un-
derlying complex dynamics. However, under the assumption of the best linear predictor
(BLP) (Definition 1 below), Ii and αi can be approximated effectively. The results are
described in the following proposition.

Definition 1.
Let x and y be two stationary time series with zero-means. Then we say that y forms the
best linear predictor (BLP) of x among a variable set G if σ2(x|x̄, ȳ) < σ2(x|x̄, z̄),∀z ∈ G,
where σ2(x|x̄, ȳ) := minp,{fr},{dr}E{xt −

∑p
r=1[fryt−r + drxt−r]}2.

Proposition 1.
In the situation described above, if further the weighted trajectory ui := αi1x

i1 + αi2x
i2 +

· · ·+αikx
ik , made by the trigger set and the corresponding weights, forms the BLP to the

trajectory of the i-th neuron (namely, xi) among the whole network; then based on the
GC framework, Ii can be completely identified and the estimate of αi can be obtained as
α̂i := {

∑p
r=1 a

i,i1
r ,
∑p

r=1 a
i,i2
r , . . . ,

∑p
r=1 a

i,ik
r } up to a scale factor.

Proof:
Let ui := αi1x

i1 + · · · + αikx
ik form the BLP of xi, then there exist a positive integer

p and projection coefficients {f ir, r = 1, 2, . . . , p}, {dir, r = 1, 2, . . . , p} such that xit =∑p
r=1[f

i
ru

i
t−r + dirx

i
t−r] + εit, where εi is a stationary white noise possessing the smallest
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variance among the whole network. Replacing ui with the weighted trajectory, we obtain

xit =

p∑
r=1

[f iru
i
t−r + dirx

i
t−r] + εit

=

p∑
r=1

[f ir(α
i
1x

i1
t−r + · · ·+ αikx

ik
t−r) + dirx

i
t−r] + εit

=

p∑
r=1

[αi1f
i
rx

i1
t−r + · · ·+ αikf

i
rx

ik
t−r + dirx

i
t−r] + εit, (3.4)

which represents the underlying but unknown network structure of {xi, xi1 , xi2 , . . . , xik}.
On the other hand, fitting to data the same equation as the i-th equation in (4.7), we
have the following empirical regression (compared to the theoretical regression (3.4))

xit =

p∑
r=1

[ai,1r x
1
t−r + · · ·+ ai,nr x

n
t−r] + ε̃it. (3.5)

Let Īi := {1, 2, . . . , i − 1, i + 1, · · · , n} − Ii be the complement of the trigger set Ii. We

note that ε̃it ≡ εit if ai,sr = 0,∀r = 1, . . . , p and s ∈ Īi; otherwise ε̃i and εi are totally

different but with V ar(ε̃it) = V ar(εit) since (3.4) has the smallest residual variance among
the whole network and (3.5) has more degree of freedom (coefficients) than (3.4).

If the trajectories of the Īi-th neurons are stochastically independent of both the i-th
and Ii-th neurons, then we have ai,sr = 0, for r = 1, . . . , p and s ∈ Īi. Comparing (3.5)
with (3.4), we then have

p∑
r=1

ai,i1r = αi1

p∑
r=1

f ir , . . . ,

p∑
r=1

ai,ikr = αik

p∑
r=1

f ir. (3.6)

Since the projection coefficients in (3.5) can be obtained by solving the Yule-Walker
equation or simply by the least-squares method, (3.6) immediately leads to

αi
1

p∑
r=1

ai,i1r

=
αi
2

p∑
r=1

ai,i2r

= · · · = αi
k

p∑
r=1

ai,ikr

,
(3.7)

provided

p∑
r=1

f ir 6= 0. For αis and

p∑
r=1

ai,isr to have the same sign for s = 1, 2, . . . , k, we

can, without loss of generality, assume that

p∑
r=1

f ir > 0. If

p∑
r=1

f ir < 0, then −ui is used to

replace ui.

If some of the trajectories of the Īi-th neurons are linearly dependent of the i-th
or Ii-th neurons, then ai,sr 6= 0, for some r ∈ {1, · · · , p}, s ∈ Īi and the projection
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coefficients in (3.5) are thus affected, resulting in a biased estimation of (3.7). However,
this predicament can be solved by virtue of the assumption of BLP and the concept of
GC. Since the εi in (3.4) has the smallest variance among the whole network, taking out

any element of {xs : s ∈ Īi} from the regression (3.5) does not increase the variance of ε̃i.
According to the concept in (4.8), we can correct the model coefficients by ruling out all
the useless information of the Īi-th neurons. �

We end this subsection by the following remarks.

Remark 1.
The idea behind the BLP mathematical assumption is that the weighted voltage-trajectory
of the trigger neurons should be the best linear explanation for the voltage-trajectory of
the target neuron among the whole network. Based on this interpretation, the GC index
can be extended to measure both excitatory and inhibitory effects in virtue of the esti-
mated synaptic weights.

Remark 2.

The synaptic weight αis and the summation of the projection coefficients

p∑
r=1

ai,isr are

forced to have the same sign for s = 1, 2, . . . , k, because positive and negative

p∑
r=1

ai,isr

refer to positive and negative correlations between xi and xis , respectively.

Remark 3.
The case k = 0 means that the i-th neuron is not triggered by other neurons in the
network, therefore Fj→i = 0,∀j and there is no synaptic weights to be estimated.

Remark 4.
For readers dealing with sparse networks, L1 regularization (or LASSO) would be an use-
ful technique for fitting to data a sparse regression to avoid overfitting and the problem
of multiple testing [1,49]. In this scenario, a computational much more efficient approach
would be first running LASSO to learn the network structure and then using GC to get
the causal strength.

Remark 5.
Some arguments in the proof such as the stochastic independence and the estimations of
projection coefficients assume that the law of large numbers (LLN) holds. In the case of
small samples or limited data, estimation errors come into exsitence thus some statistical
inferences in the proof may fail. However, the proof holds for most large-sample cases.

3.2.3 The algorithm

Here, we present a step by step algorithm for computing the proposed index (named
neuron synaptic index, NSI) from multiple spike train data.
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Step 1 : Properly smooth the spike train data by kernel filtering (Gaussian kernels
are commonly used) to acquire the approximate membrane voltage trajectories to
the underlying voltage evolution of the neurons in the network.

Step 2 : Subtract the mean value from each trajectory to form zero-mean time
series and then fit the vector autoregressive model in (4.7). Appropriate model
order can be obtained beforehand by using AIC in (4.9).

Step 3 : Compute all the GC indices by (4.8) for all pairs of neurons, i.e., i, j =
1, 2, . . . , n with i 6= j and also perform F -tests to ensure statistical significance.

Step 4 : For each node i = 1, 2, . . . , n, refine the autoregressive model by ruling out
the information about the Īi-th neurons, i.e., the neurons with insignificant Fj→i,
to correct the projection coefficients.

Step 5 : For each node, compute the synaptic weights of the trigger neurons by
simply summing the projection coefficients up to the model order p as shown in
(3.7).

Step 6 : For each node, take the weighted trajectory as a new explanatory time
series and then compute the GC index from this weighted time series to that of the
node.

Step 7 : Finally, the NSI is then defined to be the l1-normalized 2 estimated
weights obtained in Step 5 multiplying the GC index obtained in Step 6 (see (B.5)
in Appendix).

3.3 Simulation study

Here, three sorts of network models are simulated to investigate the proposed algorithm:
the linear, almost-linear, and nonlinear networks. The linear network, derived directly
from autoregressive framework, examines the validity of the synaptic weights estimation
in Proposition 1. Additionally, the almost-linear and nonlinear networks, derived both
from integrate-and-fire (IF) neuron models, examine the appropriateness of the BLP
assumption in Remark 1 through the reflected subthreshold dynamics of the models.
The Matlab code used for this study is available to interested readers upon request.

Significance tests on the GC indices should be corrected for multiple testing and we
adopted the approach of False Discovery Rate (FDR) [6] which has greater statistical
power than the conservative Bonferroni correction. In this and next sections, significant
Granger causality interaction between input neurons and output neurons are calculated
using an F -test corrected by FDR for multiple comparison with confidence threshold at
P − value = 0.05 (i.e., 95% significance level).

2This means that the estimated weight vector α̂i = (α̂i1 , α̂i2 , . . . , α̂ik) is normalized by its l1 norm
‖α̂i‖1 := |α̂i1 |+ |α̂i2 |+ · · ·+ |α̂ik |. Then the normalized weight vector α̂i/‖α̂i‖1 will have unit l1 vector
norm.
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3.3.1 Linear network

A linear network, depicted in Figure 3.1, is presented here. The time series variable w
serves as the trajectory of post-synaptic neuron, while x, y, and z serve as the trajectories
of pre-synaptic neurons with synaptic weights α, β, and γ, respectively. For readers not
familiar with the multivariate settings in Section 3.2, a much clear-cut derivation of the
NSI using this simple network is given in Appendix.

Trajectories are generated by the following equations:

v1,t = ε1,t
xt = g1v1,t−1 + g2v1,t−2 + g3v1,t−3 + ε2,t
v2,t = h1xt−1 + h2xt−2 + h3xt−3 + ε3,t
yt = ε4,t
zt = ε5,t
ut = αxt + βyt + γzt
wt = f1u1,t−1 + f2u1,t−2 + f3u1,t−3 + d1w1,t−1 + d2w1,t−2 + d3w1,t−3 + ε6,t
v3,t = ε7,t

(3.8)

where εk ∼iid N (0, 1), k = 1, . . . , 7 are zero-mean uncorrelated Guassian white noises.

Settings of the simulation are: [g1, g2, g3] = [0.4, 0.2, 0.1], [h1, h2, h3] = [0.1, 0.2, 0.4],
[f1, f2, f3] = [0.5, 0.3, 0.1], and [d1, d2, d3] = [0.1, 0.3, 0.5]. Variable x is triggered by v1 and
variable v2 is triggered by x. Variable v3 serves as an independent node in the network.
The length of each trajectory is 1000. We note that the above coefficients can be replaced
by any stable coefficients and the simulation results shown below will remain unaffected.
The stability condition [47] ensures (3.8) to generate stationary processes. There have
been many convincing examples published [3, 76] showing that the GC framework is a
well-established method for identifying the causal relationship among stationary time
series. If some unstable coefficients are used instead, the generated time series will be
nonstationary, then some signal preprocessing technique (e.g, differencing) will be needed
to convert nonstationary processes to stationary processes. More details can be found
in [4].

For [α, β, γ] = [1.0, 0.5,−0.5], averaging from 100 repeated simulations gives: the
synaptic weights estimates [α̂, β̂, γ̂] = [0.9012, 0.4549,−0.4539], the weighted GC index
Fα̂x+β̂y+γ̂z→w = 0.4515, the normalized weights [1.0000, 0.5064,−0.5053] (divided by |α̂|
instead of |α̂|+|β̂|+|γ̂| defined in (B.5) for easy comparison with the underlying weights),
and the NSIs [Nx→w, Ny→w, Nz→w] = [0.4515, 0.2286,−0.2281] with standard deviations
[0.0359, 0.0396, 0.0347]. Notice that no knowledge of the parameters for generating the
data was used in the estimation procedure, only the generated trajectories were used.

The results show that the normalized weight estimates [1.0000, 0.5064,−0.5053] are
consistent with the underlying weights [1.0, 0.5,−0.5], and the collateral variables v1,v2,
and v3 do not affect the estimation since Fv1→w, Fv2→w, and Fv3→w are all zero, thus
these information can be ruled out directly by the GC analysis. The NSI (B.5) unites
the estimated synaptic weights and the weighted GC index. A positive (negative) value
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represents excitatory (inhibitory) synaptic connection and it’s magnitude at the same
time reflects the degree of synaptic influence.

Figure 3.1: A simple linear network. Red circles represent excitation and green squares
represent inhibition. Variable w serves as the trajectory of post-synaptic neuron, variables
x, y, and z serve as the trajectories of pre-synaptic neurons with synaptic weights α > 0,
β > 0, and γ < 0, respectively. v1,v2, and v3 are collateral variables, consisting of source,
target, and independent nodes. A much clear-cut derivation of the NSI using this simple
network is given in Appendix.

3.3.2 Almost-linear network

To illustrate the synaptic weights estimation in a neural spiking context, a simple feedfor-
ward IF neuron network was simulated (depicted in Figure 3.2). Briefly, Neurons #2− 5
were modeled by independent Poisson processes with firing rate λ. Neurons #8, 9 were
modeled as single strong inputs by independent Poisson processes with firing rate 1.5λ.
Neuron #7 was implemented by a direct discrete time summation of the synaptic inputs
αi (mV), i = 1, . . . , 6 (i.e., the weighted outputs of Neurons #1−6 after some propagation
delay), leading to its internal potential that was reset to Vreset = −80 (mV) and produced
a spike when the threshold value Vth = −55 (mV) was reached. During the refractory
period, the potential will linearly recover from Vreset to the resting potential Vrest = −70
(mV). Time resolution was set to be 1 ms and there was a 2 mV decrease/increase of the
potential to the Vrest every unit time depending on the status of de/hyper -polarizations,
respectively to model the diffusion of ions. The internal potential was forced to lie in
the range [EK+ , ENa+ ] = [−90, 60], the equilibrium potential of K+ and Na+, respec-
tively and action potentials were normalized to 30 mV for display. Neurons #1, 6 were
implemented in the same way that Neuron #7 was done with synaptic inputs 30 (mV)
from Neurons #8, 9 respectively. Neurons #10, 11 were modeled as independent nodes
by independent Poisson processes with firing rate λ.
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Figure 3.2: A simple feedforward integrate-and-fire neuron network. Red circles repre-
sent excitation and green squares represent inhibition. Neurons #2 − 5 are modeled by
independent Poisson processes with firing rate λ. Neurons #8, 9 were modeled as single
strong inputs by independent Poisson processes with firing rate 1.5λ. Neuron #7 is im-
plemented by a direct discrete time summation of the synaptic inputs α1, . . . , α6(mV ).
Neurons #1, 6 are implemented in the same way that Neuron #7 is done with synaptic
inputs 30 (mV) from Neurons #8, 9 respectively. Neurons #10, 11 are modeled as inde-
pendent nodes by independent Poisson processes with firing rate λ. Neurons #5, 6 are
inhibitory, i.e., α5, α6 < 0.

We begin with Simulation 1 in which the synaptic weights were fixed at α1 = α2 =
α3 = α4 = 5 (mV) and α5 = α6 = −2.5 (mV), and the propagation delay of each source
neuron was set to be 10 ms. 60 sec. voltage-trajectories of Neurons #1, 6, 7 were then
simulated according to the way described above. The first 1 sec. of the trajectory of
Neuron #7 with input rate λ = 40 Hz is shown in Figure 3.3 and the corresponding
simulated spike train data is shown in Figure 3.4. The subthreshold trajectory of Neuron
#7 is not very regular due to the lack of self dynamics, compared to the nonlinear
network (3.9a) introduced next. However, in this case it faithfully reflects the effects
of the input neurons, that is, the actual degree of effects of the input neurons are to
be proportional to the corresponding synaptic weights. To analyze the network directly
through the simulated spike train data, a Gaussian kernel filtering with bandwidth 5 ms.
was performed to obtain an approximation of the subthreshold dynamics of each neuron
in the network, the result is depicted in Figure 3.5. Based on the filtered data, both GC
and NS indices were computed for different input rates λ =40, 60, and 80 Hz. In each
case, the indices were both obtained from the average of 100 simulations and the results
are summarized in Table 3.1.

We can find from Table 3.1 that although the GC indices correctly identify the di-
rection of information flow among the network, the effects of excitations and inhibitions
could not be differentiated directly by the sign of the indices since they are by definition
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Figure 3.3: The first 1 sec. of a simulated voltage-trajectory of Neuron #7 with input
rate λ = 40 Hz. The simulation was done according to the way described in the context
with α1 = α2 = α3 = α4 = 5 (mV), α5 = α6 = −2.5 (mV), and 10 ms. propagation
delay. The subthreshold trajectory is not very regular due to the lack of self dynamics,
in other words, Neuron #7 is completely triggered by Neurons #1− 6.

Figure 3.4: The first 1 sec. of a simulated spike train data of the simple feedforward
network with λ = 40 Hz, α1 = α2 = α3 = α4 = 5 (mV), α5 = α6 = −2.5 (mV), and 10
ms. propagation delay.

to be nonnegative. From the GC indices, we can only tell that Neurons #2−4 have more
influences than Neurons #1, 5 have on Neuron #7. Information about the underlying
synaptic weights was not provided. As can be found in the lower part of Table 3.1, the
synaptic weights were successfully reconstructed from the spike train data by the NS
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Figure 3.5: A Gaussian kernel filtering with bandwidth 5 ms. was performed on the
spike train data depicted in Figure 3.4 to obtain an approximation of the subthreshold
dynamics of each neuron in the network. The computations of the GCI and NSI were
based on the filtered results and this figure shows the first 250 data points.

Table 3.1: The numerical results of Simulation 1 in Section 3.3.2. The effects of excitations
and inhibitions can be differentiated directly by the sign of the NS indices and the ratio
of effects between them was close to 5.0 : −2.5 = 1 : −0.5. Numbers in parentheses are
corresponding standard errors.

Input rate 1→ 7 2→ 7 3→ 7 4→ 7 5→ 7 6→ 7 8→ 1 9→ 6
Granger Causality Index (GCI)

λ = 40 0.0223 0.1972 0.1906 0.1919 0.0497 0.0066 2.9976 3.0085
(0.0035) (0.0125) (0.0155) (0.0129) (0.0059) (0.0031) (0.0868) (0.1016)

λ = 60 0.0411 0.2770 0.2768 0.2769 0.0791 0.0115 2.5959 2.6063
(0.0038) (0.0138) (0.0141) (0.0156) (0.0076) (0.0020) (0.0573) (0.0829)

λ = 80 0.0591 0.3466 0.3425 0.3444 0.1020 0.0156 2.3026 2.3235
(0.0080) (0.0188) (0.0155) (0.0168) (0.0083) (0.0037) (0.0531) (0.0575)

Neuron Synaptic Index (NSI)
λ = 40 0.1155 0.1145 0.1140 0.1137 -0.0571 -0.0555 2.9972 3.0083

(0.0043) (0.0040) (0.0052) (0.0046) (0.0034) (0.0069) (0.0868) (0.1018)
λ = 60 0.1530 0.1502 0.1505 0.1503 -0.0756 -0.0754 2.5959 2.6054

(0.0052) (0.0048) (0.0045) (0.0054) (0.0038) (0.0027) (0.0570) (0.0819)
λ = 80 0.1799 0.1795 0.1793 0.1783 -0.0893 -0.0898 2.3030 2.3237

(0.0044) (0.0049) (0.0059) (0.0053) (0.0036) (0.0046) (0.0532) (0.0571)

indices in the sense that the ratio between excitatory and inhibitory sources was close to
5.0 : −2.5 = 1 : −0.5 for all different input rates. We note that the GC and NS indices
from Neurons #8−12 to Neuron #7 are all zero (i.e., insignificant). As the results show,
a large NSI does not necessarily imply a large GCI. That is, a strong synaptic trans-
mission can not always guarantee a strong causal relationship; it depends also on the
firing pattern/timing of the source and the coordination with other neurons. So, from
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this perspective, NSI can be treated as a better proxy for synaptic weights rather than a
new causality measure. GCI provides information on causal structure while NSI provides
complementary information on synaptic transmission.

In Simulation 2, the input rate λ was fixed at 60 Hz while the synaptic weights varied.
Let α1 = α2 = α3 = α4 = 5 (mV) and α5 = α6 = −k × 5 (mV). Three different weight-
ratio k = 0.5, 1.0, 1.5 were considered, and the computed NS indices are presented in
Table 3.2. We can find that the ratio between excitatory and inhibitory sources was still
close to 1 : −k as weight-ratio changes.

Table 3.2: The numerical results of Simulation 2 in Section 3.3.2. The input rate λ was
fixed at 60 Hz, α1 = α2 = α3 = α4 = 5 (mV) , and α5 = α6 = −k× 5 (mV). The ratio of
effects between excitatory and inhibitory sources was still close to 1 : −k as weight ratio
changes. Numbers in parentheses are corresponding standard errors.

weight ratio 1→ 7 2→ 7 3→ 7 4→ 7 5→ 7 6→ 7 8→ 1 9→ 6
Neuron Synaptic Index (NSI)

k = 0.5 0.1530 0.1502 0.1505 0.1503 -0.0756 -0.0754 2.5959 2.6054
(0.0052) (0.0048) (0.0045) (0.0054) (0.0038) (0.0027) (0.0570) (0.0819)

k = 1.0 0.1077 0.1072 0.1063 0.1067 -0.1025 -0.1031 2.5928 2.6151
(0.0041) (0.0031) (0.0044) (0.0043) (0.0034) (0.0037) (0.0857) (0.0671)

k = 1.5 0.0615 0.0621 0.0612 0.0625 -0.0857 -0.0866 2.5849 2.5869
(0.0030) (0.0031) (0.0036) (0.0037) (0.0029) (0.0039) (0.0764) (0.0735)

3.3.3 Nonlinear network

Following the same network topology (Figure 3.2) presented in the previous subsection,
here the dynamics of Neuron #7 was modeled instead by the Izhikevich’s simple spiking
neuron model [35, 50, 51] as it can provide more neural responses compared to classical
IF neurons. Briefly, Izhikevich neurons are modeled by the following 2-D differential
equation with an after-spiking resetting:

v′ = 0.04v2 + 5v + 140− u+ I (3.9a)

u′ = a(bv − u) (3.9b)

if (v ≥ 30 mV) then v ← c and u← u+ d. (3.9c)

The variable v represents the membrane potential of the neuron, u represents a membrane
recovery variable, and I represents the total input synaptic current. The parameter a
describes the time scale of u, characterizing the recovery rate. The parameter b describes
the sensitivity of u to the subthreshold fluctuations of v. Parameters c and d are spike
reset values of v and u, respectively. Two sets of parameter values were considered in
this study: the fast spiking (FS) neurons (a = 0.1, b = 0.25, c = −65, d = 2) and the
low-threshold spiking (LTS) neurons (a = 0.02, b = 0.25, c = −65, d = 2).

Here, the parameter settings are: λ = 60 Hz, and α1 = α2 = α3 = α4 = 5 (mV),
α5 = α6 = −k×5 (mV), all of which with 10 ms. propagation delay. The numerical results

36



for the FS and LTS neuron models with weight-ratio k = 1.0, 1, 5, 2.0 are summarized in
Table 3.3. The NS indices were obtained from the average of 100 simulations, and the
first 0.5 sec. of the voltage fluctuations of the Neuron #7 under FS and LTS models are
depicted in Figure 3.6 and Figure 3.7, respectively.

Table 3.3: The numerical results of the simulations in Section 3.3.3. The parameter
settings are: λ = 60 Hz, and α1 = α2 = α3 = α4 = 5 (mV), α5 = α6 = −k × 5 (mV),
all of which with 10 ms. propagation delay. Numbers in parentheses are corresponding
standard errors.

weight ratio 1→ 7 2→ 7 3→ 7 4→ 7 5→ 7 6→ 7 8→ 1 9→ 6
NSI of the FS neuron model

k = 1.0 0.0634 0.0688 0.0691 0.0695 -0.0444 -0.0425 2.3089 2.3414
(0.0092) (0.0058) (0.0070) (0.0065) (0.0049) (0.0094) (0.0514) (0.0531)

k = 1.5 0.0514 0.0565 0.0572 0.0548 -0.0522 -0.0516 2.3269 2.3450
(0.0095) (0.0061) (0.0062) (0.0059) (0.0074) (0.0096) (0.0551) (0.0513)

k = 2.0 0.0428 0.0467 0.0460 0.0483 -0.0502 -0.0572 2.3309 2.3379
(0.0097) (0.0081) (0.0074) (0.0082) (0.0066) (0.0099) (0.0423) (0.0513)

NSI of the LTS neuron model
k = 1.0 0.0512 0.0536 0.0539 0.0538 -0.0256 -0.0238 2.0241 2.0213

(0.0095) (0.0092) (0.0085) (0.0071) (0.0051) (0.0084) (0.0351) (0.0399)
k = 1.5 0.0404 0.0438 0.0443 0.0436 -0.0373 -0.0387 1.9861 2.0182

(0.0093) (0.0071) (0.0067) (0.0059) (0.0051) (0.0075) (0.0434) (0.0569)
k = 2.0 0.0352 0.0394 0.0398 0.0390 -0.0401 -0.0443 2.0244 2.0124

(0.0093) (0.0061) (0.0068) (0.0042) (0.0068) (0.0094) (0.0554) (0.0530)

Figure 3.6: The first 0.5 sec. of a simulated voltage-trajectory of Neuron #7 with k = 1
under the fast spiking (FS) neuron model (a = 0.1, b = 0.25, c = −65, d = 2).

The voltage-trajectories are much regular than that of the almost-linear network (Fig-
ure 3.3) due to the self-dynamics of the term 0.04v2 + 5v + 140 in (3.9a). It can be
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Figure 3.7: The first 0.5 sec. of a simulated voltage-trajectory of Neuron #7 with k = 1
under the low-threshold spiking (LTS) neuron model (a = 0.02, b = 0.25, c = −65, d = 2).

considered that the nature (or the type) of Neuron #7, to some degree, affects its own
behavior; therefore, the effects of the inputs (Neurons #1− 6 ) will not be equivalent to
the underlying mechanism, meaning that the actual degree of effects of the input neurons
will not to be proportional to the corresponding synaptic weights.

Now, it can be found from Table 3.3 that under both the FS and LTS neuron models
the negative NSIs from Neurons #5, 6 to Neuron #7 grow in magnitude, relative to the
positive ones from Neurons #1−4 to Neuron #7, as weight-ratio k increase. Although the
NS indices are not proportional to the underlying weights as what mentioned above, the
trend is correctly captured for the increase of the negative NSIs with increasing inhibition
strength. Finally, we note that the reason for the absence of the case k = 0.5 was that
the inhibitory input was so weak to the dynamical system that the resulting NSIs were
not significantly different from zero; that is, Neurons #5 − 6 actually did not have any
influence on Neuron #7 even though the underlying synaptic weights were not zero.

3.4 Real data analysis

In this section, we illustrate the application of the proposed method to real spike train
data and a simulation is also given to examine the validity of the results. Note that
significant Granger causality interaction are again calculated using an F -test corrected
by FDR for multiple comparison with confidence threshold at P − value = 0.05.

3.4.1 Setup and results

Multichannel electrophysiological recording was used for tracking neuronal activity in
the anterior cingulate cortex (ACC) and the striatum (STR) and are the same data set
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used in our previous study [33]. Briefly, neuronal spikes were recorded from the ACC
and the STR of urethane-anesthetized rats after administration of saline or 0.05 or 0.5
mg/kg quinpirole. A multichannel neuronal acquisition processor system (Plexon, Dallas,
TX, USA) was used for unit recording, with a filter range of 400 Hz to 8.8 kHz and a
sampling rate of 40 kHz. Spikes were further sorted using Offline Sorter (Plexon), based
on principle-component clustering with a user-defined template. All animal procedures
were approved by the Institutional Animal Care and Use Committee of National Ilan
University and adhered to the guidelines established by the Codes for Experimental Use
of Animals from the Council of Agriculture, Taiwan.

For this study, data from two independent rats were considered and the numbers of
neurons recorded were: 8 (ACC, Rat#1), 9 (STR, Rat#1), 16 (ACC, Rat#2), and 15
(STR, Rat#2). The neurons were randomly put into 2 groups (ACC, Rat#1), 3 groups
(STR, Rat#1), 4 groups (ACC, Rat#2), and 3 groups (STR, Rat#2), and each group had
4 (8/2) neurons (ACC, Rat#1), 3 (9/3) neurons (STR, Rat#1), 4 (16/4) neurons (ACC,
Rat#2), and 5 (15/3) neurons (STR, Rat#2). After the random grouping described
above, the single unit spike trains in each group were pooled as a whole for investigating
the brain network. Hence there were 5 (2 + 3) pools in Rat#1 and 7 (4 + 3) pools in
Rat#2.

After binning with bin width 2 sec., the GCIs between these random pools can then be
computed (Section 3.2.3). Twenty minutes after quinpirole injection, 400 sec. data from
both Rat#1 and Rat#2 were used to compute the GCIs. Significant GCIs were found
only when certain random group appear, meaning that certain neurons should be pooled
together to perform causality. These specific combinations are summarized in Table 3.4,
and the corresponding GCIs and NSIs are summarized in Table 3.5. The results show
that, under the quinpirole administration, there were excitatory effects inside the ACC
(Figure 3.8(a)), excitatory effects from the ACC to the STR (Figure 3.8(b) and 3.8(c)),
and inhibitory effects inside the STR (Figure 3.8(d)).

Notice that, for single-input case, e.g., in rat 1 from Pool #2 (ACC) to Pool #3
(STR), both GCI (0.1232) and NSI (0.1116) reflect the degree of causal effect. However,
the NSI will be more appropriate than the GCI since the NSI is obtained by fitting a
more refined autoregressive model (Step 4 in Section 3.2.3). For multiple-input case, e.g.,
in rat 2 from Pool #2 (ACC) to Pool #5 (STR) and from Pool #7 (STR) to Pool #5
(STR), the GCI (0.0879 and 0.1598) still reflects the degree of causal effects while the NSI
(0.1445 and -0.1058) reflects the degree and the type of synaptic transmission. From this
perspective, NSI can be treated as a new complement to provide information on synaptic
weights that original GCI does not provide.

Finally, we have to note that, under the saline administration, the same combinations
performed no significant GCIs (i.e., GCIs = 0). Furthermore, the GCIs between the ACC
of Rat#1 and the STR of Rat#2, and the GCIs between the STR of Rat#1 and the ACC
of Rat#2 were all computed, and they were all zero.
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Table 3.4: Groups found performing significant NSIs in Section 3.4.1. The numbers of
neurons recorded were: 8 (ACC, Rat#1), 9 (STR, Rat#1), 16 (ACC, Rat#2), and 15
(STR, Rat#2). Each group had 8/2 = 4, 9/3 = 3, 16/4 = 4, and 15/3 = 5 neurons.
Hence there were 2 + 3 = 5 pools in Rat#1 and 4 + 3 = 7 pools in Rat#2.

Rat no. Pool no. location elements
1 1 ACC 2,4,5,7
1 2 ACC 1,3,6,8
1 3 STR 3,5,7
1 4 STR 1,4,6
1 5 STR 2,8,9

2 1 ACC 4,8,10,16
2 2 ACC 1,5,6,11
2 3 ACC 3,7,9,12
2 4 ACC 2,13,14,15
2 5 STR 6,7,8,9,15
2 6 STR 1,3,10,11,14
2 7 STR 2,4,5,12,13

Table 3.5: The NSIs between the pooled data from the combinations summarized in
Table 3.4.

Rat no. From To GCI NSI
1 Pool #2 (ACC) Pool #1 (ACC) 0.1966 0.1035
1 Pool #2 (ACC) Pool #3 (STR) 0.1232 0.1116
1 Pool #2 (ACC) Pool #4 (STR) 0.1163 0.1995
2 Pool #2 (ACC) Pool #5 (STR) 0.0879 0.1445
2 Pool #2 (ACC) Pool #6 (STR) 0.1098 0.1121
2 Pool #7 (STR) Pool #5 (STR) 0.1598 -0.1058

3.4.2 Implications of the pooled data

A spike train obtained by superimposing individual spike trains and disregarding where
each spike came from is called a pooled spike train [25]. Adjacent neurons usually work
together with each other to generate suitable pooled spike trains to perform specific tasks.
An illustration is provided in Figure 3.9. On the cause side (left brown), the pooled train
(pool 1) can be considered as a collective input with respect to the effects of temporal or
spatial summation of one of the following two types: (i) the additive effect produced by
many PSPs that have been generated from several very close synapses on the same post-
synaptic neuron at the same time. (ii) the additive effect produced by many PSPs that
have been generated from several synapses which have similar effects on the axon hillock
of the same post-synaptic neuron. On the effect side (middle blue), the pooled train
(pool 2) can be considered as a collective output, which represents the total discharge
of a group of cooperative neurons in function. Again, the collective output (pool 2) can
then be treated as a collective input to trigger others (right purple).
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Figure 3.8: The firing trajectories (400 sec. with 2 sec. bin) under the quinpirole adminis-
tration. (a) excitatory effects inside the ACC (NSI = 0.1035). (b) excitatory effects from
the ACC to the STR (NSIs = 0.1116, 0.1995). (c) excitatory effects from the ACC to the
STR (NSIs = 0.1445, 0.1121). (d) inhibitory effects inside the STR (NSI = −0.1058). It
can be found that positive (negative) NSIs exhibit positive (negative) correlations in the
fluctuations of the signals.

Cross correlations can be dramatically amplified by pooling, that is, weak correlations
between pairs of neurons in two populations can lead to strong correlations between the
summed activity of these two populations [56]. Similar results should hold for the GC
analyses. To check this, a simulation is designed as follows: Let P = {p1, p2, . . . , pn}
be a Poisson spike train of time length T with firing rate λ. Let Q be the output spike
train of the almost linear system in Section 3.3.2 with input P , synaptic weight w, and
time delay d. Since P will be treated as a pooled spike train, we uniformly decompose
it into k sub-trains {Pi, i = 1, . . . , k}, that is, each pj ∈ P has the same probability
to be distributed into the sub-train Pi, for j = 1, . . . , n and i = 1, . . . , k. As a result,
∪iPi = P , ∩iPi = ∅, and the firing rate of each Pi is λ/k. Further, let {Ui, i = 1, . . . ,m}
be m uncorrelated spike trains with {Pi, i = 1, . . . , k} to serve as the role of environment
neurons. The distribution of each Ui is also Poisson with rate λ/k. Now, for T = 10
(sec.), λ = 20 (spikes/sec.), w = 8 (mV), d = 10 (ms.), k = 5, m = 2, and bin width 0.1
(sec.), the GCI from P to Q is 0.2655, a quite large value; while the GCIs from Pi to Q is
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Figure 3.9: An illustration for pooled data. On the cause side (left brown), the pooled
train (pool 1) can be considered as a collective input with respect to the effects of temporal
or spatial summation of one of the two types ((i) and (ii) in the context.) On the effect
side (middle blue), the pooled train (pool 2) can be considered as a collective output,
which represents the total discharge of a group of cooperative neurons in function. Again,
the collective output (pool 2) can then be treated as a collective input to trigger others
(right purple).

about 0.005, a very low causality. The results are obtained from the average of 100 such
simulations, and the first 2 sec. of one of the realizations is shown in Figure 3.10; where
P is labeled neuron #1, Pi, neuron #2− 6, Ui, neuron #7− 8, and Q is labeled neuron
#9.

To check the appropriateness of random grouping used in the previous subsection, 5
spike trains are randomly chosen from Pi and Ui and then be pooled together to compute
the GCI from such pooled data to the target Q. The averaged results are: when these
5 spike trains are all chosen from Pi then the GCI attends the maximum 0.2655. When
4 is chosen from Pi and 1 from Ui the GCI is destroyed and is 0.0641. Finally, when 3
is chosen from Pi and the other 2 are from Ui, the GCI is 0.0209. The results show that
if the pooled data contains the spikes of other irrelevant neurons then the GCIs will be
small and destroyed.

For real-world spike train data, individual neurons usually perform weak contributions
to each other while groups of neurons perform very significant contributions. In the
former case, causal influences are difficult to be detected via most statistical methods,
grouping and pooling are usually needed to enhance the causation. Since our data set is
small, random grouping approach is both reasonable and sufficient to explore the network
structure. Significant NSIs are also found within an acceptable period of time. How to
efficiently group neurons is absent in our current analysis, but has been being studied via
numerical simulations. Efficient grouping strategy is an interesting research topic and
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Figure 3.10: The first 2 sec. simulated spike trains of one of the realizations. The
parameters are: T = 10 (sec.), λ = 20 (spikes/sec.), w = 8 (mV), d = 10 (ms), k = 5,
m = 2, and bin width 0.1 (sec.), The source spike train P is labeled neuron #1, the
decomposed trains Pi are labeled neuron #2 − 6, the environment trains Ui are labeled
neuron #7− 8, and the target Q is labeled neuron #9.

will be included in a separate article in the future.

3.5 Discussion

The original Granger causality index is by definition nonnegative, thereby lacking of
the trait for differentiating the effects of excitations and inhibitions between neurons.
Inspired by the concept that the firing pattern of the post-synaptic neuron is generally
a weighted result of the effects of several pre-synaptic neurons with possibly different
synaptic weights; a computational algorithm was proposed (Section 3.2.3) under a BLP
assumption for analyzing neuronal networks by estimating the synaptic weights among
them. The extended Granger causality index, the NSI, was shown to be able to measure
both excitatory and inhibitory effects between neurons by several numerical simulations.
The method was also illustrated to analyze real spike train data from the ACC and the
STR. Significant NSIs were found only when certain random groups appear (Table 3.4
and 3.5); and the results showed, under the quinpirole administration, the significant
existence of excitatory effects inside the ACC, excitatory effects from the ACC to the
STR, and inhibitory effects inside the STR.

Mathematically, the proposed NSI is just a weighted version of the original GCI,
that is, the NSI is obtained by multiplying the normalized weights with the GCI from
the weighted trajectory to the target trajectory. Physiologically, under the prerequisite
conditions that (i) all of the connectivity relations between neurons are correctly identified
and (ii) the behavior of influences follow the vector autoregressive model with some
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finite order; the original GCI can reveal the degree of causal influences between neurons
while the extended NSI can reveal the degree and the type of synaptic transmission.
Theoretically, the GCI and NSI can only be approximations or even be spurious if either
of these two conditions fail to hold. It seems to be a very strong constraint for researchers
to apply these approaches in practice. However, things are not really that bad. The
simulated IF spiking networks in Section 3.3.2-3.3.3 are tested to be correctly captured
by vector autoregressive model and show a consistency between network structures and
the proposed indices. Finally and also importanly, note that significant GCI or NSI do
not necessarily signify a anatomical connectivity since they are fundamentally statistical
concepts. Treated with care, the GCI and NSI could be useful for researchers to infer
possible relationships between network structure or to construct a description of network
dynamics in neuroscience.

It should be pointed out that the significance of the NSI can be checked directly via
the significance test on the GCI, since the proposed method is GC-based. In addition,
if voltage-trajectories are available then the method can be applied directly without any
ambiguity. For spike train data, however, the role of voltage-trajectory can be replaced
by the trajectory of firing rate estimated using binning or Gaussian kernel filtering. The
high firing rate in the simulations are to ensure significant inhibitory effects among the
simple networks. In practice, the high firing rate can be considered as a consequence of
pooling spike trains. Low firing rate leads to sparse spike trains, for which the Gaussian
kernel filtering will introduce highly artificial signals which will hinder the autoregression
modeling for computing the GCI. The solution is applying some suitable preprocessing
[75] or applying binning [63], which is more stable for converting sparse spike trains.

In closing, it is worth noting some related articles for possible future works. (i)
In Section 3.3.3, the NSI was shown to successfully capture the behavior of synaptic
transmissions. Although the NSI values are correlated with the underlying synaptic
weights, it is not clear what the actual relationship might be. Cadotte et al. have found
that under certain settings, the GCI and the synaptic weight has the following nonlinear
relationship [12]:

FY→X =
1

1 + 384e−02124∗sw
, (3.10)

where sw denotes the synaptic weight. Similar results for the NSI may be derived in the
future using (3.10). (ii) When faced with most scientific computing problem, a linear
model is generally a first, basic, and winning strategy to try. Neural spiking networks are
highly complicated and nonlinear, a linear model could be considered to be satisfactory
if it can well approximates the behavior of a nonlinear dynamics to some degree. In the
current study, the behavior of the simulated nonlinear network is well captured by our
approach; obtaining the exact ratio of the synaptic weights can be set as an important
objective for us to strive. Our proposed method and the BLP assumption could be refor-
mulated and generalized to handle nonlinear dynamics by means of the nonparametric
kernel modelling [48] in the future. (iii) This work did not consider any hidden network
structure in both theoretical and numerical parts. The partial Granger causality, pro-
posed by Guo et al. [30], may be used to extend the method to deal with the effects
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of exogenous inputs or hidden neurons. (iv) Granger causality is originally designed to
measure effect, not mechanism [5]. Numerical evidences showed that Granger causality
can, to some degree, be used to infer the underlying mechanism. The GCI only use
the information of residual noises, there are still some useful information which could
be extracted from the regression coefficients [32]. The NSI uses the summation of re-
gression coefficients (3.7), other forms of information may be developed in the future.
(v) The Gaussian filtering and binning techniques link the spike train data and the sta-
tistical models for continuous signals, leading to both mathematically easy derivations
and computationally efficient algorithms. However, distortions may arise after the filter-
ing is applied. A generalized linear model (GLM)-based point process framework was
proposed for directly applying the GC on neural spike trains without any filtering [38].
A conceptually similar but more robust measure, called directed information, was also
proposed [55]. The modality-independent nature allows the measure to characterize sta-
tistically causal relationship between arbitrary stochastic processes. A more sophisticated
coupling model was also proposed [53]. It’s parameters consist of a bank of stimulus fil-
ters, spike-history filters, and couping filters. Splines can also be used to fit nonlinearity
in the stimulus filter. The mathematics used in these frameworks are more involved than
that used in this chapter, but we surmise that the proposed algorithm and assumption
can somehow be translated into them to obtain similar or more powerful results in the
future. (vi) Recently, a new framework of spatio-temporal Granger causality has been
proposed to reliably estimate the Granger causality from experimental datasets possess-
ing time-varying properties [44]. The NSI may be extended to its dynamic version for
automatically analyzing experimental datasets without laborious jobs on windowing.
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Chapter 4

Large-Scale Sparse Neuronal
Networks

4.1 Introduction

In neuroscience, identifying causal dependencies between multiple time-series signals is
a topic of great interest. Regression methods and time-series models have been ex-
tensively employed in attempt to uncover the underlying brain connectivity. One of
the most popular and successful method is the Granger causality (GC) which pro-
poses that if the prediction of one time series can be improved with the knowledge
of a second time series, then there is a causal influence from the second one to the
first one. The prediction mentioned above is made by using autoregressive models [27]
and a GC index (GCI) is also derived to quantify the strength of caual interactions.
The GC is shown to be effective in distinguishing between direct and indirect causal
connections and has applications across various domains such as: electroencephologra-
phy/magnetoencephalography (EEG/MEG) [2,26,30], local field potential (LFP) [13,24],
functional magnetic resonance imaging (fMRI) [40,45,73], calcium imaging (CI) [21], and
multiple spike trains [18,38,41,74]. Recently, based on the GC framework, we developed
a new index called neuron synaptic index (NSI) to measure the synaptic weights between
neurons in a neuronal network [62]. GCI is designed in its original form to measure causal
connectivities while NSI is designed to measure structural connectivities, and in general
they differ from each other. The GCI and NSI will be shortly introduced in Section 4.2.5
and 4.2.6, respectively. More details about the GC can be found in [4, 8, 12,20,31].

Nowadays, due to the development of multi-electrode array and optogenetic tech-
niques, more and more large-scale time series data become available. When the number
of variables is much larger than the length of time series, traditional implementation of
the GC encounters serious problems such as solvability of large-sclae underdetermined
system, high computational cost/complexity, and multiple statistical testing. The same
problem exists in microarray dataset of large-scale gene regulatory networks [15, 49, 76].
To cope with this high-dimensional situation, penalized regression methods (e.g., L1-
regularization or LASSO, LASSO variants) have been applied. Although these methods
lead to a considerable progress for the analysis of high-dimensional sparse data, there still
leaves room for improvement. (1) The regularization parameter is not easy to tune, con-

46



ducting time-consuming cross-validation (CV) is needed. (2) CV usually gives not very
sparse solutions which might contains lots of irrelevant variables, leading to overfitting
problems. (3) Lasso can fail to distinguish irrelevant variables that are highly correlated
with relevant variables [72]. (4) Lasso may lead to severe bias for large regression coeffi-
cients [22]. GC has proven to be effective and powerful in the case where the number of
variables is much less than the length of time series. For neural data, short time-series
length is often used to ensure the stationarity of the data and the time-invariance of
the underlying structure since neural data are usually only locally stationary and locally
time-invariant. However, the number of variables is capable of being reduced if the un-
derlying connection to each neuron is sparse, meaning that the number of connecting
edges is quite small compared to the number of possible edges. Therefore, our direction
is to first, for each neuron, reduce the large-scale variable set to a small one which may
contains a few irrelevant variables but should contains all the relevant variables; then, for
each neuron, apply the GC to the associated reduced set.

The assumption of network sparsity has the following important meanings: the first
one is for mathematical reasons that oversized ratio between variable number and series
length causes extreme obstacles to any existing statistical method. So, limit the net-
work complexity is currently the best way to cross the obstacle. The second one is for
the evidence found that many brain areas have sparse structures. For instance, cortical
neurons were found to be quite sparsely connected relative to the population of neu-
rons in a cell’s neighborhood [10, 11, 16, 52, 66]. The third one is for practical use that
picking out sparse but pivotal variables from a large-scale dataset may be quite satis-
factory to most experimental purposes. Based on the sparsity assumption, we propose
a computational algorithm (in Section 4.2.4) for automatically and effectively selecting
relevant neurons from a large scale neuronal network. The kernel wrapped in the algo-
rithm is a three-stage model selection approach (Section 4.2.1–4.2.3), which consists of
(1) an orthogonalized forward selection of input variables that circumvents difficulties
with inverting high-dimensional matrices, (2) a stopping criterion to terminate the for-
ward inclusion of variables, and (3) a backward elimination of variables according to the
criterion to ensure the consistency of the approach. The performance was checked by a
large-scale simulated threshold spiking neuron model, and real data from rats executing
empathic prosocial behaviors were also analyzed.

4.2 Methods

4.2.1 Forward stepwise regression via the OGA iteration

Consider the multiple linear regression model

yt =

p∑
j=1

βjxtj + εt, t = 1, . . . , n, (4.1)

with p predictor variables xt1, xt2, · · · , xtp that are uncorrelated with the zero mean ran-
dom noises εt. Estimating the regression coefficients {βj, j = 1, . . . , p} by standard regres-
sion methods confronts difficult computational and statistical problems (e.g., covariance
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matrix inversion, multiple statistical testing) when p is larger than n. Here we introduce
a stepwise regression method, called the orthogonal greedy algorithm (OGA), which uses
componentwise linear regression so that the problems can naturally be avoided.

First, initialize with ŷk(·) = 0 and compute at the end of the kth iteration the residual

U
(k)
t := yt − ŷk(xt), 1 ≤ t ≤ n, which represents the unexplained portion of yt at the k-th

stage. Second, choose the most correlated variable xĵk+1
with U

(k)
t , that is, set

ĵk+1 = arg min
1≤j≤p

n∑
t=1

(U
(k)
t − β̃

(k)
j xtj)

2, (4.2)

where β̃
(k)
j =

∑n
t=1 U

(k)
t xtj/

∑n
t=1 x

2
tj is the projection coefficient of xtj onto U

(k)
t . Third,

orthogonalize the predictor variables sequentially so that componentwise linear regression
can be applied at each stage, circumventing difficulties with high-dimensional matrix
inversion. Let Xj = (x1j, . . . , xnj)

> be the realization of predictor variable xtj. Suppose
Xĵ1

,X⊥
ĵ2
, . . . ,X⊥

ĵk
are the orthogonal vectors already acquired in the previous stages, we

can then compute X⊥
ĵk+1

= Xĵk+1
− X̂ĵk+1

, where X̂ĵk+1
is the projection of Xĵk+1

onto

span{Xĵ1
,X⊥

ĵ2
, . . . ,X⊥

ĵk
}. Finally, update the predictor by

ŷk+1(xt) = ŷk(xt) + β̂
(k)

ĵk+1
x⊥
t,ĵk+1

, (4.3)

where β̂
(k)

ĵk+1
=
∑n

t=1 U
(k)
t x⊥

t,ĵk+1
/
∑n

t=1(x
⊥
t,ĵk+1

)2.

4.2.2 Stopping rule and consistent model selection

A stopping rule is needed to terminate the forward inclusion of the OGA iteration de-
scribed above; otherwise all of the p variables will ultimately be included, which is useless
and unnecessary. It is shown that, under certain general and sparsity conditions, one can
terminate the OGA iteration after K = O((n/ log p)1/2) steps, that is, after K variables
have been included [34]. Generally, K � p.

In addition to the stopping rule, we also need a criterion to select the smallest set
of all relevant variables along the OGA path (an input variable is called ”relevant” if
its associated βj is nonzero, and ”irrelevant” otherwise). Here we introduce a variable-
selection consistent criterion, called the ”high-dimensional information criterion” (HDIC).
Specifically, for ∅ 6= J ⊂ {1, . . . , p}, let σ̂2

J = n−1
∑n

t=1(yt − ŷt;J)2, where ŷt;J denotes the
fitted value of yt when Y = (y1, . . . , yn)> is projected onto span{Xj, j ∈ J}. The criterion
is then defined as the following:

HDIC(J) = n log σ̂2
J + ](J)w log p, (4.4)

k̂ = arg min
1≤k≤K

HDIC(Ĵk), (4.5)

where Ĵk = {ĵ1, . . . , ĵk} and different choices of w correspond to differenct criteria. The
case w = log n corresponds to high-dimensional Bayesian information criterion (HDBIC);
without the log p factor, (4.4) reduces to the usual Bayesian information criterion (BIC).
The case w = c log log n with c > 2 corresponds to Hannan-Quinn criterion (HDHQ).
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4.2.3 Further trimming to exclude irrelevant variables

The procedure introduced so far consists of three main parts: (i) carrying out the OGA
iteration K times, (ii) computing HDIC(Ĵk) at the end of the kth iteration, (iii) choosing
the k that minimizes HDIC(Ĵk) over 1 ≤ k ≤ K after the OGA iteration terminates.
Although it can be shown to select the smallest set of all relevant variables with proba-
bility approaching 1, some irrelevant variables may still be included along the OGA path
if one of the required mathematical conditions is violated. To exclude irrelevant variables
under these circumstances, we further use the HDIC to define a subset N̂ of Ĵk̂ by

N̂ = {ĵl : HDIC(Ĵk̂ − {ĵl}) > HDIC(Ĵk̂), 1 ≤ l ≤ k̂} if k̂ > 1, (4.6)

and N̂ = {ĵ1} if k̂ = 1. Note that (4.6) only requires the computation of k̂− 1 additional
least squares estimates (the ĵk̂ itself must satisfy HDIC(Ĵk̂−{ĵk̂}) > HDIC(Ĵk̂), therefore

need not to be tested again). The idea is that if there is a redundant variable lies in Ĵk̂,
then the HDIC will be even less when the redundant variable is picked out.

4.2.4 The computational algorithm

Here, we present a step by step algorithm for automatically and effectively selecting
relevant neurons from a large scale neuronal network. We use OGA, HDIC and Trim to
represent the procedure introduced in Section 4.2.1, 4.2.2, and 4.2.3, respectively.

Step 1 : Properly smooth the spike train data by binning or kernel filtering [42,
63, 75] to form time series matrix S ∈ RN×n where N denotes the total number
of neurons and n denotes the data length. (For time-series data, this step can be
omitted) Then for each neuron do Step2–Step4

Step 2 : Choose a candidate time lag m ∈ N and then convert the autoregressive
AR(m) model of S into multiple linear regression format with X ∈ R(n−m)×p and
y ∈ R(n−m)×1 where p = Nm� n.

Step 3 : Run OGA+HDIC+Trim to get the suggested variable set J(m).

Step 4 : Return to Step2 several times and then choose the optimal J(m) which
has the smallest HDIC(J(m)) := n log σ̂2

J(m) + ](J(m))w log p(m).

Step 5 : Finally, use these feasible small-size variable sets to do further sophisti-
cated modeling.

Once the network scale has been reduced to an acceptable range, some causal inference
methods, such as Granger causality index and neuron synaptic index can then be applied.
The following subsections give an outline of these methods and more details can be found
in [62].
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4.2.5 Granger causality index

Let X = (x1, x2, . . . , xN) be a stationary N -dimensional time series process with zero
mean. The m-th order linear autoregressive model for X is given by

xt,1 =
m∑
r=1

a1,1r xt−r,1 + · · ·+
m∑
r=1

a1,Nr xt−r,N + εt,1

xt,2 =
m∑
r=1

a2,1r xt−r,1 + · · ·+
m∑
r=1

a2,Nr xt−r,N + εt,2

...

xt,N =
m∑
r=1

aN,1r xt−r,1 + · · ·+
m∑
r=1

aN,Nr xt−r,N + εt,N ,

(4.7)

where regression coefficient ai,jr indicates the coupling strength from xj to xi. The resid-
uals ε1, ε2, · · · , εN are zero-mean uncorrelated white noises with covariance matrix Σ.
The diagonal entry {Σii = V ar(εi), i = 1, . . . , N} measures the prediction error of
{xi, i = 1, . . . , N}, respectively, based on the information from time stamps t − 1 to
t−m.

To see the importance of xj to xi, we can exclude the variable xj from (4.7) to obtain
a reduced (N − 1)-dimensional autoregressive model with residual series ηi,j of xi and
corresponding prediction error Γjii = V ar(ηi,j). If Σii is significantly less than Γjii in some
suitable statistical sense, then we say that xj Granger-cause xi. This causality can be
quantified by the GC index from xj to xi formulated as:

Fj→i = ln
Γjii
Σii

. (4.8)

It is clear that Fj→i = 0 when Γjii = Σii, i.e., xj has no causal influence on xi, and
Fj→i > 0 when xj Granger-cause xi. The significance of the GC index (4.8) can be tested
via an F -test on the corresponding coefficients ai,jr [29, 60]. Parameters ai,jr and Σii can
be estimated by solving the Yule-Walker equation [39] and an efficient model order can
be obtained by minimizing the Akaike Information Criterion:

AIC(m) = 2 log(det(Σ)) +
2N2m

n
, (4.9)

where n is the total length of the time series.

4.2.6 Neuron synaptic index

Consider the multivariate zero-mean membrane voltage time series, X = (x1, x2, . . . , xN),
of N distinct neurons. Suppose that the i-th neuron is triggered by some other k neurons
in the network, say {i1, i2, . . . , ik}-th neurons, with synaptic weights {αi1, αi2, . . . , αik}.
Positive and negative weights represent excitatory and inhibitory influences on the i-th
neuron, respectively.
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Under the assumption of the best linear predictor (BLP) (Definition 1 below), Ii :=
{i1, i2, . . . , ik} and αi := {αi1, αi2, . . . , αik} can be estimated effectively. The results are
described in the following proposition.

Definition 1.
Let x and y be two stationary time series with zero-means. Then we say that y forms the
best linear predictor (BLP) of x among a variable set G if σ2(x|x̄, ȳ) < σ2(x|x̄, z̄),∀z ∈ G,
where σ2(x|x̄, ȳ) := minp,{fr},{dr}E{xt −

∑p
r=1[fryt−r + drxt−r]}2.

Proposition 1.
In the situation described above, if further the weighted trajectory ui := αi1xi1 + αi2xi2 +
· · ·+αikxik , forms the BLP of xi among the whole network; then based on the GC frame-
work, Ii can be completely identified and αi can be estimated as α̂i := {

∑m
r=1 a

i,i1
r ,
∑m

r=1 a
i,i2
r ,

. . . ,
∑m

r=1 a
i,ik
r }.

The neuron synaptic index then can be computed through the following steps:

Step 1 : Compute all the GC indices by (4.8) for all pairs of neurons and also
perform F -tests to ensure statistical significance.

Step 2 : For each node i = 1, 2, . . . , N , refine the autoregressive model by ruling
out the neurons with insignificant Fj→i to correct the regression coefficients.

Step 3 : For each node, compute the synaptic weights of the trigger neurons by
simply summing the regression coefficients up to the model order m.

Step 4 : For each node, take the weighted trajectory as a new explanatory time
series and then compute the GC index from this weighted time series to that of the
node.

Step 5 : Finally, the NSI is defined to be the l1-normalized estimated weights
obtained in Step 3 multiplying the GC index obtained in Step 4.

4.3 Results

4.3.1 Simulation

In this section, we report the simulation results and performance of OGA+HDHQ and
OGA+HDBIC through three different types of models: the multiple linear regression,
autoregressive time-series and threshold spiking neuron models. The Matlab code used
for this study is available to interested readers upon request.

Multiple linear regression model

Consider the regression model

yt =

q∑
j=1

βjxtj +

p∑
j=q+1

βjxtj + εt, t = 1, . . . , n, (4.10)
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where βq+1 = · · · = βp = 0, p � n, εt are i.i.d. N(0, σ2) and are independent of the xtj.
The regressors are designed as

xtj = dtj + ηwt, j = 1, . . . , p, (4.11)

where η ≥ 0 tunes the strength of correlation between input variables, and (dt1, . . . , dtp, wt)
>,

1 ≤ t ≤ n are i.i.d. normal with zero mean and identity covariance matrix I. Simple
calculation gives Corr(xtj, xtk) = η2

1+η2
, which increases with η > 0. The input variables

are mutually independent when η = 0.

Consider (4.10) with q = 5, (β1, . . . , β5) = (3,−3.5, 4,−3.6, 3.2), and σ = 1. We
choose K = D(n/ log p)1/2 with D = 5 and choose c = 2.01 for HDHQ. We have also al-
lowed D to vary between 3 and 10 and c to vary among 2.01, 2.51, 3.01, 3.51 and 4.01, but
the results are quite similar for the different choices. The results are shown in Table 4.1.
For the sample size n ≥ 100, OGA includes all of the 5 relevant regressors within K iter-
ations, and for about 99% of the 1000 simulations, the HDHQ and HDBIC successfully
identify the smallest correct model, irrespective of whether the candidate regressors xj
are uncorrelated (η = 0) or highly correlated (η = 2) with y. The OGA+HDBIC+Trim
has the best performance, choosing the smallest correct model in all simulations. For
comparison, we have also included the performance of OGA+BIC. Table 4.1 shows that
for n ≥ 100, OGA+BIC always chooses the largest model ĴK along the OGA path.

Define the mean squared prediction error as follows:

MSPE =
1

1000

1000∑
l=1

(

p∑
j=1

βjx
(l)
n+1,j − ŷ

(l)
n+1)

2, (4.12)

where x
(l)
n+1,1, . . . , x

(l)
n+1,p are the regressors associated with y

(l)
n+1, the new outcome in the

lth simulation run, and ŷ
(l)
n+1 denotes the predictor of y

(l)
n+1. The MSPEs of OGA+BIC

are quite larger than that of other methods when n ≥ 100 due to serious overfitting.
The traditional BIC can include all relevant variables but it also includes all irrelevant
variables. The large p leads to many spuriously significant regression coefficients if one
does not adjust for multiple testing [6]. The factor used in (4.4) of HDIC can be regarded
as such adjustment.

Autoregressive time-series model

Consider the autoregressive model

yt = 0.95yt−r0 +

q∑
j=1

βjxt−rj ,j +
N−1∑
j=q+1

m∑
r=1

βr,jxt−r,j + εt, t = 1, . . . , n, (4.13)

where β1,q+1 = · · · = βm,N = 0, εt are i.i.d. N(0, σ2) and are independent of xtj. Here,
for simplicity, we assume that {y, xj, j = 1, . . . , q} contributes to y only through single
lags {rj, j = 0, . . . , q}, respectively. The regressors xj are designed in the same way
as (4.11). After converting to multiple linear regression format, the total number of
candidate variables will be p := Nm� n.
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Table 4.1: Frequency, in 1000 simulations, of including all five relevant variables (Correct),
of selecting exactly the relevant variables (E), of selecting all relevant variables and i
irrelevant variables (Ei), and of selecting the largest model which includes all relevant
variables (E∗).

η n p Method E E1 E2 E3∼5 E∗ Correct MSPE
0 50 1000 OGA+HDHQ 818 78 23 8 1 928 5.416

OGA+HDHQ+Trim 873 45 8 2 0 928 5.408
OGA+HDBIC 864 44 16 0 0 924 5.533
OGA+HDBIC+Trim 923 1 0 0 0 924 5.526
OGA+BIC 0 0 0 0 928 928 10.598

100 2000 OGA+HDHQ 991 9 0 0 0 1000 0.057
OGA+HDHQ+Trim 991 9 0 0 0 1000 0.057
OGA+HDBIC 999 1 0 0 0 1000 0.053
OGA+HDBIC+Trim 1000 0 0 0 0 1000 0.053
OGA+BIC 0 0 0 0 1000 1000 1.214

200 4000 OGA+HDHQ 1000 0 0 0 0 1000 0.023
OGA+HDHQ+Trim 1000 0 0 0 0 1000 0.023
OGA+HDBIC 1000 0 0 0 0 1000 0.023
OGA+HDBIC+Trim 1000 0 0 0 0 1000 0.023
OGA+BIC 0 0 0 0 1000 1000 0.942

2 50 1000 OGA+HDHQ 592 132 55 38 2 819 10.908
OGA+HDHQ+Trim 780 37 1 0 1 819 10.884
OGA+HDBIC 614 116 51 20 0 801 12.247
OGA+HDBIC+Trim 800 1 0 0 0 801 12.230
OGA+BIC 0 0 0 0 819 819 14.682

100 2000 OGA+HDHQ 989 11 0 0 0 1000 0.062
OGA+HDHQ+Trim 995 5 0 0 0 1000 0.062
OGA+HDBIC 994 6 0 0 0 1000 0.059
OGA+HDBIC+Trim 1000 0 0 0 0 1000 0.059
OGA+BIC 0 0 0 0 1000 1000 1.152

200 4000 OGA+HDHQ 1000 0 0 0 0 1000 0.027
OGA+HDHQ+Trim 1000 0 0 0 0 1000 0.027
OGA+HDBIC 1000 0 0 0 0 1000 0.027
OGA+HDBIC+Trim 1000 0 0 0 0 1000 0.027
OGA+BIC 0 0 0 0 1000 1000 1.022

Consider (4.13) with q = 5, (β1, . . . , β5) = (3,−3.5, 4,−3.6, 3.2), m = 3, (r0, r1, . . . , r5) =
(3, 1, 2, 3, 2, 1) and σ = 1. We choose K = D(n/ log p)1/2 with D = 5 and choose c = 2.01
for HDHQ. Define the mean squared prediction error

MSPE =
1

1000

1000∑
l=1

(y
(l)
n+1 − ŷ

(l)
n+1)

2, (4.14)

where y
(l)
n+1 is the new outcome in the lth simulation run, and ŷ

(l)
n+1 denotes the predictor
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of y
(l)
n+1. This MSPE is also used in the next subsection because in practice we only

observed the data y and the true model coefficients are unknown. The simulation results
are shown in Table 4.2. The results are quite similar to those presented in Table 4.1
except that more samples are needed for the methods to perform well when η > 0. This
is mainly due to the structural discrepancy between autoregressive and linear regression
models for the former has temporal correlations between lag variables while the latter
has ideal i.i.d. samples.

Table 4.2: Simulation results of autoregressive time-series model (see notation in Ta-
ble 4.1).

η n p Method E E1 E2 E3∼5 E∗ Correct MSPE
0 50 750 OGA+HDHQ 793 94 22 9 1 919 5.491

OGA+HDHQ+Trim 859 44 11 4 1 919 5.490
OGA+HDBIC 847 54 13 0 0 914 6.047
OGA+HDBIC+Trim 912 2 0 0 0 914 6.046
OGA+BIC 0 0 0 0 919 919 10.964

100 1500 OGA+HDHQ 995 5 0 0 0 1000 1.017
OGA+HDHQ+Trim 995 5 0 0 0 1000 1.017
OGA+HDBIC 1000 0 0 0 0 1000 1.019
OGA+HDBIC+Trim 1000 0 0 0 0 1000 1.019
OGA+BIC 0 0 0 0 1000 1000 2.278

1 100 750 OGA+HDHQ 776 178 33 13 0 1000 1.142
OGA+HDHQ+Trim 983 16 1 0 0 1000 1.120
OGA+HDBIC 790 167 30 13 0 1000 1.139
OGA+HDBIC+Trim 999 1 0 0 0 1000 1.118
OGA+BIC 0 0 0 0 1000 1000 2.300

200 1500 OGA+HDHQ 991 9 0 0 0 1000 1.120
OGA+HDHQ+Trim 995 5 0 0 0 1000 1.120
OGA+HDBIC 996 4 0 0 0 1000 1.119
OGA+HDBIC+Trim 1000 0 0 0 0 1000 1.119
OGA+BIC 0 0 0 0 1000 1000 2.077

Threshold spiking neuron model

To illustrate the variable selection method in a neural spiking context, a large-scale
sparse feedforward I&F neuron network is simulated (depicted in Figure 4.1). Briefly,
excluding the target neuron, there are N − 1 neurons in total, but only q = 5 neurons
have inputs to the target. Three of the five have excitatory effects on the target and the
other two hava inhibitory effects. The target neuron is implemented by a direct discrete
time summation of the synaptic inputs {β1, . . . , β5} with propagation delay {r1, . . . , r5}
respectively. Besides, the background noisy input is set to be i.i.d. N(µ, σ) at every time
step with time resolution 1 ms. The internal potential is reset to Vreset = −80 (mV)
and produces a spike when the threshold value Vth = −55 (mV) is reached. During the
refractory period, the potential will linearly recover from Vreset to the resting potential
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Vrest = −70 (mV). To model the diffusion of ions, there is a 2 mV decrease/increase of the
potential to the Vrest every unit time depending on the status of de/hyper -polarizations,
respectively. The internal potential is forced to lie in the range [EK+ , ENa+ ] = [−90, 60],
which are the equilibrium potentials of K+ and Na+.

Figure 4.1: The simulated feedforward neuronal network. Red circles represent excita-
tion and green squares represent inhibition. Source neurons 1 − 5 have synaptic inputs
β1, . . . , β5 with propagation delay r1, . . . , r5, respectively. The target neuron N is im-
plemented by a direct discrete time summation of the synaptic inputs. The background
noisy input is set to be i.i.d. N(µ, σ) at every time step with time resolution 1 ms.

The rest N − 1− q neurons are independent of the target neuron, but all the N − 1
neurons are modeled as Poisson point processes (Xtj) with same firing rate:

Xtj = Dtj +Wt, j = 1, . . . , N − 1, (4.15)

where (Dt1, . . . , Dt,N−1,Wt) are independent Poisson processes with firing rate (λ, . . . , λ, η)
Hz. So, {Xtj, j = 1, . . . , N−1} have the same firing rate λ+η and are correlated with each
other if η 6= 0. The synaptic weights are fixed at (β1, . . . , β5) = (3,−3.5, 4,−3.6, 3.2)×
3 mV, and the associated propagation delay are fixed at (r1, . . . , r5) = (1, 2, 3, 2, 1)× 0.5
sec. Let n donote the data length after binning with bin size 0.5 sec and p = N ∗ m
denote the total number of candidate variables, where m is the chosen AR order (will be
3 in this case).

We begin with Simulation 1 in which the associated parameter settings are: λ = 40
Hz, η = 0 Hz, µ = σ = 0; namely, the candidate input processes are uncorrelated with
each other with common firing rate 40 Hz and there are no background noisy inputs
to the target neuron. The simulated firing trajectories and the simulation result are
shown in Figure 4.2 and Table 4.3, respectively. For about 99% of the 1000 simulations,
both HDHQ and HDBIC successfully identify the smallest correct model as sample size
n increases. But it is found that, for small sample size, HDBIC is too conservative and
performs not very well; while HDHQ+Trim identifies the smallest correct input neurons
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in 948 simulations and includes 1−2 extra irrelevant neurons in only 16 simulations. The
traditional BIC always chooses the largest set of neurons along the OGA path and causes
serious overfitting (largest MSPE).

Figure 4.2: The firing behaviors of the source and target neurons in Simulation 1.
The associated parameter settings are: (β1, . . . , β5) = (3,−3.5, 4,−3.6, 3.2)× 3 mV,
(r1, . . . , r5) = (1, 2, 3, 2, 1)× 0.5 sec., N = 250, n = 100, m = 3, p = Nm = 750,
λ = 40, η = µ = σ = 0.

Table 4.3: Results of Simulation 1 in threshold spiking neuron model (see notation in
Table 4.1). The associated parameter settings are: λ = 40 Hz, η = 0 Hz, µ = 0, σ = 0.

n p Method E E1 E2 E3∼5 E∗ Correct MSPE
100 750 OGA+HDHQ 900 57 6 1 0 964 1.221

OGA+HDHQ+Trim 948 15 1 0 0 964 1.222
OGA+HDBIC 760 4 0 0 0 764 1.680
OGA+HDBIC+Trim 761 0 0 0 0 761 1.680
OGA+BIC 0 0 0 0 993 993 2.455

200 1500 OGA+HDHQ 995 5 0 0 0 1000 1.188
OGA+HDHQ+Trim 995 5 0 0 0 1000 1.188
OGA+HDBIC 999 1 0 0 0 1000 1.185
OGA+HDBIC+Trim 999 1 0 0 0 1000 1.185
OGA+BIC 0 0 0 0 1000 1000 2.041

400 2250 OGA+HDHQ 997 3 0 0 0 1000 1.215
OGA+HDHQ+Trim 997 3 0 0 0 1000 1.215
OGA+HDBIC 1000 0 0 0 0 1000 1.217
OGA+HDBIC+Trim 1000 0 0 0 0 1000 1.217
OGA+BIC 0 0 0 0 1000 1000 1.920
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In Simulation 2, the background noise presents with mean value and standard devi-
ation (µ, σ) = (0.15, 0.1). Results are shown in Table 4.4. HDBIC still converges to the
smallest set of input neurons as n becomes large enough while performs not well when
n is small. HDHQ+Trim performs relatively well when n is small, selecting the correct
set of neurons in 969 simulations. However, it tends to include 1 − 2 irrelevant neurons
at all n since the target neuron in this simulation is not completely triggered by the five
input neurons but also by the unmeasurable background noise. Nevertheless, compared
to BIC, including 1− 2 irrelevant neurons among a large set of neurons is still acceptable
and good enough in practical use.

Table 4.4: Results of Simulation 2 in threshold spiking neuron model (see notation in
Table 4.1). The associated parameter settings are: λ = 40 Hz, η = 0 Hz, µ = 0.15,
σ = 0.1.

n p Method E E1 E2 E3∼5 E∗ Correct MSPE
100 750 OGA+HDHQ 770 176 22 1 0 969 1.285

OGA+HDHQ+Trim 811 153 5 0 0 969 1.279
OGA+HDBIC 649 14 0 0 0 663 1.937
OGA+HDBIC+Trim 656 3 0 0 0 663 1.934
OGA+BIC 0 0 0 0 997 997 2.469

200 1500 OGA+HDHQ 728 263 9 0 0 1000 1.241
OGA+HDHQ+Trim 728 264 8 0 0 1000 1.241
OGA+HDBIC 997 3 0 0 0 1000 1.227
OGA+HDBIC+Trim 997 3 0 0 0 1000 1.227
OGA+BIC 0 0 0 0 1000 1000 2.128

400 2250 OGA+HDHQ 409 567 24 0 0 1000 1.331
OGA+HDHQ+Trim 409 567 18 0 0 1000 1.330
OGA+HDBIC 994 6 0 0 0 1000 1.299
OGA+HDBIC+Trim 994 6 0 0 0 1000 1.299
OGA+BIC 0 0 0 0 1000 1000 2.023

In Simulation 3, we set further (λ, η) = (30, 10) Hz, making the firing behaviors of the
candidate input neurons similar; in other words, we make the candidate input variables
correlated to each other. Here, the background noise with (µ, σ) = (0.15, 0.1) still keeps.
Table 4.5 shows that, compared to Simulation 2, more sample data are needed to ensure
good performance. Because the input variables behave similarly, more information (i.e.,
large sample size) are needed for the method to distinguish them using the associated
behavior of the target neuron. For practical use, if neurons from some brain area behave
very similarly, then longer recordings will be needed to correctly identify relevant input
neurons among them.

Finally, in simulation 4, we consider two extra indirect inputs in the original network
(Figure 4.3). Neurons 6 and 7 are simulated as independent Poisson processes with firing
rate 40 Hz. The point processes of Neurons 1 and 2 are designed as time shifted version
of Neurons 6 and 7 respectively with i.i.d. N(0.5, 0.1) propagation delay on each spike
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Table 4.5: Results of Simulation 3 in threshold spiking neuron model (see notation in
Table 4.1). The associated parameter settings are: λ = 30 Hz, η = 10 Hz, µ = 0.15,
σ = 0.1.

n p Method E E1 E2 E3∼5 E∗ Correct MSPE
200 750 OGA+HDHQ 768 225 4 0 0 997 1.347

OGA+HDHQ+Trim 769 226 2 0 0 997 1.347
OGA+HDBIC 918 3 0 0 0 921 1.359
OGA+HDBIC+Trim 915 2 0 0 0 917 1.358
OGA+BIC 0 0 0 0 1000 1000 2.188

400 1500 OGA+HDHQ 473 508 19 0 0 1000 1.376
OGA+HDHQ+Trim 473 512 15 0 0 1000 1.376
OGA+HDBIC 989 11 0 0 0 1000 1.363
OGA+HDBIC+Trim 989 11 0 0 0 1000 1.363
OGA+BIC 0 0 0 0 1000 1000 2.080

event [61]. The two indirect inputs are considered as very strong and excitatory so that
Neurons 1 and 2 have very similar spiking behavior to that of Neurons 6 and 7. The
simulated firing trajectories of Neurons 1 and 6 is shown in Figure 4.4 and the simulation
result is shown in Table 4.6. Comparing Table 4.6 with Table 4.4, we can find that,
for small sample size (n = 100), there are much more mistakes made in Simulation 4
since the method has not enough information to distinguish Neuron 1 from Neuron 6 and
distinguish Neuron 2 from Neuron 7. However, increasing sample size n rapidly alleviates
the mistakes and converges nearly to the true set of input neurons.

Figure 4.3: Two extra indirect inputs added in the original network. Neurons 6 and 7 are
simulated as independent Poisson processes with firing rate 40 Hz. The point processes
of Neurons 1 and 2 are designed as time shifted version of Neurons 6 and 7 respectively
with i.i.d. N(0.5, 0.1) propagation delay on each spike event.
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Figure 4.4: The firing behaviors of Neurons 1 and 6. The indirect input (Neuron 6) is
considered as very strong and excitatory so that Neuron 1 has a very similar spiking
behavior to that of Neurons 6.

Table 4.6: Results of Simulation 4 in threshold spiking neuron model with two extra
indirect inputs (see notation in Table 4.1). The associated parameter settings are: λ = 40
Hz, η = 0 Hz, µ = 0.15, σ = 0.1.

n p Method E E1 E2 E3∼5 E∗ Correct MSPE
100 750 OGA+HDHQ 661 144 11 1 0 817 1.427

OGA+HDHQ+Trim 684 130 3 0 0 817 1.434
OGA+HDBIC 555 10 0 0 0 565 1.955
OGA+HDBIC+Trim 558 0 0 0 0 558 1.980
OGA+BIC 0 0 0 0 875 854 2.616

200 1500 OGA+HDHQ 736 210 3 1 0 950 1.301
OGA+HDHQ+Trim 737 210 3 0 0 950 1.301
OGA+HDBIC 946 1 0 0 0 947 1.290
OGA+HDBIC+Trim 946 1 0 0 0 947 1.290
OGA+BIC 0 0 0 0 957 957 2.191

400 2250 OGA+HDHQ 451 527 20 0 0 998 1.233
OGA+HDHQ+Trim 452 531 15 0 0 998 1.234
OGA+HDBIC 993 4 0 0 0 997 1.241
OGA+HDBIC+Trim 993 4 0 0 0 997 1.241
OGA+BIC 0 0 0 0 998 998 1.950

4.3.2 Real data analysis

In this section, we illustrate the application of the proposed method to real spike train
data.
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Experimental setup

• Subjects
All animal procedures were approved by the Institutional Animal Care and Use Com-
mittee of National Taiwan University and adhered to the guidelines established by the
Codes for Experimental Use of Animals from the Council of Agriculture, Taiwan.

Experiments were conducted on adult female Long-Evans rats weighing 200300 g. At
the commence of this study, all subjects were trained to open the gate of a restraining
trap. Briefly, rats were acclimated to an arena (50 50 43 cm) for 1 hour each in the
first two days. Afterwards rats were fasted overnight and on the next day placed into the
arena containing an opened restrainer with rat chow inside. Rats were shaped to attain
the skill of gate-opening on the following two days. Rats capable of opening the gate
without any help from the experimenter more than ten times in two successive days were
defined as an opener. A total of 13 rats completed the experimental task.

• Surgery and recording method
The openers were implanted with stainless steel microwire electrodes into their anterior
cingulate cortex (ACC), insular cortex (InC) or primary motor cortex (MI). Two 8-
channel microwire array electrodes were implanted in each rat. Briefly, 8 stainless-steel
wires individually insulated with Teflon (50 µm OD) were line up linearly with equal inter-
electrode distance and a total width of 2.5 mm. Small longitudinal holes were opened in
the fronto-parietal bone for implantation into the ACC or InC. The coordinates of the
ACC were 1.5−3.5 mm anterior to and 0.6−0.8 mm lateral to the bregma, and 1.6−2.0
mm deep in the cortex. The coordinates of the InC were 1.5−3.5 mm anterior to and
3.0−5.0 mm lateral to the bregma, and 4.5−5.0 mm deep from the surface of the cortex.
The coordinates of the MI were 1−3 mm anterior to and 3 mm lateral to the bregma,
and 1.6−2.0 mm deep in the cortex. Once the electrodes of MI were in the target site,
electrical stimulation was employed to ascertain their motor fields. Electrical pulses were
delivered from a constant current stimulator (AM system, model 2100) consisting of a
train of 7 square-wave pulses, each 0.2 ms in duration, 300 Hz in 100 ms train duration.
Intensities of the test electrical stimulation ranged from 30−300 µA. This stimulation
evoked movements of muscle in whisker (22.2 %), neck (33.3 %), or upper limb (33.3 %).
No overt body movement could be discerned in the remaining 11% sites of stimulation.

Six rats had implants in the ACC and InC, four rats had implants in ACC and MI,
and three rats had implants in InC and MI. A pair of stainless-steel screws (1 mm OD)
was placed in the skull bilaterally, 2 mm posterior and 2 mm lateral to bregma for EEG
recording. The ground electrode was a stainless-steel screw located over the top of the
cerebellum (mid-occipital bone). In addition, several stainless-steel screws were placed
in the frontal and parietal bones for anchoring. A pair of seven-stranded stainless-steel
wires (793200, A-M systems) was inserted into the neck muscles for EMG recording.
After implantation, the holes in the skull and the implanted electrodes were sealed and
secured with dental cement.

•Data acquisition
Neuronal activity was recorded using a Multi-channel Neuronal Acquisition Processor
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system (MNAP, Plexon, Dallas, TX). The electrical signals were passed from the head-
set to an amplifier and band-pass filtered (spike signals: 154−13 kHz, gain: 10,000- to
32,000-fold; EEG and EMG filters: 0.7−170 Hz, gain: 5000- to 10,000-fold) displayed
on an oscilloscope and an audio monitor (Grass AM8). Real-time spike sorting was con-
trolled by SortClient (Plexon), and the sampling rate of individual channels was 40 kHz.
Synchronized video signals were acquired through CinePlex (Plexon).

• Experimental protocol
After recovery from the surgery for 5 days, the implanted rat was adapted with the
telemetry sensor (TBSI, W016020H07K1A) and habituated in the testing arena for the
rescuing task. On the testing day, we recorded behavior by videotape and neuronal ac-
tivity by telemetry of the freely moving rat in the arena. In an experimental session, the
implanted rat was acclimated to the test arena for 30 minutes and then a restrainer with
a trapped rat was placed into the center of the arena. Control sessions included testing
an implanted rat with a restrainer either being empty or containing a toy rat. Each type
of session contained ten trials and the three types of trials (30 in total) were randomized
in order.

•Pro-social behaviors in the rescuing task
Throughout the training and testing sessions, 13 female LE rats completed the 2 experi-
ment tasks after implantation of cortical recording electrode arrays. On the testing day
of the rescuing task, each rat was presented with 30 trials of the rescuing test includ-
ing 10 trials respectively for each of the following three conditions, namely, a restrainer
containing another rat, a toy rat, or no rat inside.

Experimental results

A total of 288 single units were recorded from the 13 rats. Among them, 107 units were
in the ACC from 10 rats, 82 units in the InC from 9 rats and 82 units in the MI from 7
rats. For each unit, the 5-second spike trains prior to the onset of gate-opening of each
trial were aligned and superimposed to obtain a single enhanced 5-second spike train,
which is then transformed into a 50-sample time series (through binning with bin size
100 ms.) for causal analysis. For each rat, OGA+HDHQ was used to analyze the causal
relationship among all its recorded uints through the time-series signals. The time-lag
parameter m was fixed at 5 for all rats and the NSIs were computed once the relevant
input and output neurons were identified. Through the method, we have figured out, for
each rat and condition, some special groups of neurons (from ACC, InC, or MI) conveyed
their neuronal information to some other groups of neurons (from ACC, InC, or MI)
before the rat perform the gate-opening act.

In order to investigate the functional significance of the flow information for the se-
lected neurons, we examined the correlation between neuronal activity and gate-opening
behavior using the latter as a trigger event. The averaging binned values of selected units
with congruent flow direction were transformed into Z scores according to the mean and
SD values of the baseline period from 5 s to 10 s prior to the onset of gate-opening. We
found enhancement of activities in projecting neurons of InC prior to the gate opening
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for a rat (Figure 4.5E) but not a restrainer either being empty or containing a toy rat
(Figure 4.6E). Such enhancements also found in neurons of MI projected to ACC and
InC (Figure 4.5G and 4.5H). Coherently, these changes were absent when the rat was
opening the restrainer without a real rat (Figure 4.6G and 4.6H). Hence, we suggest that
the opening acts executed by the rat for another rat may conducted by InC and contained
the affective component.

From the view of the recipient units, we also found that the activities of the recipient
units in the MI were increased after the opening acts and sustained for more than 5
seconds (Figure 4.7G to 4.7I). These enhancements were correlated with the sniffing
and social approaching behaviors of the recorded rat toward another relief rat. These
results also suggested that the social behaviors of the subject were highly related to the
strengthen limbic-motor connections.

Figure 4.5: Average all the projected ACC, InC and MI unit activity changes when the
rat was opening the gate for a conspecific. Values in the Y-axis are normalized Z-score
calculated from ACC neurons which projected to InC (A, n = 8), MI (B, n = 5), and
ACC (C, n = 17) units; InC neurons which projected to ACC (D, n = 5), MI (E, n = 4),
and InC (F, n = 15) units; MI neurons which projected to ACC (G, n = 4), InC (H,
n = 5), and MI (I, n = 15) units. The red line represents the 99 % confidence interval.
The red arrows above the histograms point to the periods of the activity exceeded mean
+2.33 SD with 2 consecutive bins. Bin size = 100 ms.
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Figure 4.6: Average all the projected ACC, InC and MI unit activity changes when the
rat was opening the gate for a toy rat or nothing inside the box. Values in the Y-axis
are normalized Z-score calculated from ACC neurons which projected to InC (A, n = 7),
MI (B, n = 10), and ACC (C, n = 4) units; InC neurons which projected to ACC (D,
n = 7), MI (E, n = 5), and InC (F, n = 11) units; MI neurons which projected to ACC
(G, n = 6), InC (H, n = 2), and MI (I, n = 12) units. The red line represents the 99 %
confidence interval. Bin size = 100 ms.
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Figure 4.7: Average all the recipient unit activity changes in the ACC, InC and MI when
the rat was opening the gate for a conspecific. Values in the Y-axis are normalized Z-
score calculated from ACC neurons which received projection from InC (A, n = 5), MI
(B, n = 5), and ACC (C, n = 19) units; InC neurons which received projection from
ACC (D, n = 9), MI (E, n = 7), and InC (F, n = 18) units; MI neurons which received
projection from InC (G, n = 3), ACC (H, n = 6), and MI (I, n = 18) units. The red line
represents the 99 % confidence interval. Bin size = 100 ms.
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Figure 4.8: Average all the recipient unit activity changes in the ACC, InC and MI when
the rat was opening the gate for a toy rat or nothing inside the box. Values in the Y-axis
are normalized Z-score calculated from ACC neurons which received projection from InC
(A, n = 8), MI (B, n = 6), and ACC (C, n = 8) units; InC neurons which received
projection from ACC (D, n = 7), MI (E, n = 2), and InC (F, n = 14) units; MI neurons
which received projection from InC (G, n = 4), ACC (H, n = 9), and MI (I, n = 12)
units. The red line represents the 99 % confidence interval. Bin size = 100 ms.

4.4 Discussion

At the commence of the experiment, all rats were trained to open the gate of a restraining
trap. Once the rat learned the opening skill, it was then implanted with microwire
electrodes into the ACC, InC or MI and recovered for another week. A total of 13 rats
completed the experimental task. Six rats had implants in the ACC and InC, four rats
had implants in ACC and MI, and three rats had implants in InC and MI. On the testing
day, a telemetry recording headpiece was connected to the microwire electrode setup and
we proceeded to record the behavior and the cortical neuronal activities throughout the
experiment. Each rat was presented with 30 trials of the rescuing test including 10 trials
respectively for each of the following three conditions, namely, a restrainer containing
another rat, a toy rat, or no rat inside.
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Evidence from human studies implicates that the ACC and InC are involved in em-
pathy [23,36,46,64,70]. According to our previous findings, neurons in the ACC and InC
showed activity specifically increased prior to rescuing acts and relate to empathic driven
prosocial behaviors (Wu et al., 2016). However, the neuronal flow direction and causal
information remain unclear. Therefore, we utilize the proposed method to assess this
issue. By means of the method, we discover causal relationship among ACC, InC and MI
under the empathy-like behavior task. The results show that the activity of the project-
ing neurons in InC connected with MI was increased significantly and specifically prior
to the execution of prosocial-rescuing behaviors. These findings provide an important
evidence to support that the empathy-related neurons in InC would convey information
to MI to trigger the prosocial behaviors.

To realize the dynamics of neural circuitry under prosocial acts is crucial for elucidat-
ing underlying empathic mechanisms. Our data demonstrated that the means by which
observing another in trap engages empathically motivated helping behaviors may relate
to the increased activity of the neurons in the InC which projected to the MI. In view of
the idea that the InC integrates the endogenous and exogenous information of self [17],
our results would imply a greater role of the InC in perception of emotions of the others
without confusion between self and others, which is an important characteristic of the
empathy. In light of our findings, the InC may serve the affective-motivational compo-
nent, i.e., the perspective and evaluation of subjective discomfort and response to trigger
the specific prosocial acts through the neurons in the MI.

Now, back to the mathematical part of the proposed method that should be noticed.
For greedy-like algorithms, the most crucial component lies in when should we stop the
iterative procedure. As Table 4.3 to Table 4.6 in Section 4.3.1 show, HDHQ performs
quite satisfactorily even when the sample size is small and only includes 1− 2 irrelevant
neurons when the behavior of target neurons can not be fully explained due to the noise.
On the other hand, the HDBIC performs well only when the sample size is large enough
and is too conservative when the sample size is samll. For practical use, we suggest that
HDHQ can be the first stopping criterion to be used. One can also resort to the HDBIC
if the information in hand is quite rich (e.g., the sample size n > 200). However, the
HDHQ can play a more important role than the HDBIC since the sample size is often
limited in reality.
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Appendix A

Derivation of the Explicit Formula

We first denote xk = x(n− k) and yk = y(n− k) for convenience. Then for the model in
(2.1), we compute matrices A and Σ by the method of Yule-Walker [54]. Since x and y
are stationary, multiply (2.1) from the right by the vector

[
x(n− 1) y(n− 1)

]
and then

take the expectation E, we have R(-1)=AR(0), where

R(0) =

[
E
(
x21
)

E
(
x1y1

)
E
(
x1y1

)
E
(
y21
) ]

and R(−1) =

[
E
(
x1x2

)
E
(
x2y1

)
E
(
x1y2

)
E
(
y1y2

) ] .
Thus, we get A = R(−1)R−1(0). Alternatively, Σ can be obtained by Σ = R(0) −
AR>(−1) [68]. Substituting A into Σ gives

Σ = R(0)−R(−1)R−1(0)R>(−1). (A.1)

Using the same computation, we have Ã = R̃(−1)R̃−1(0) and Σ̃ = R̃(0)− ÃR̃>(−1) for
the perturbed model in (2.4), where

R̃(0) =

[
E
(
x21 + δx21 + 2x1δx1

)
E
(
x1y1 + y1δx1

)
E
(
x1y1 + y1δx1

)
E
(
y21
) ]

and

R̃(−1) =

[
E
(
(x1 + δx1)(x2 + δx2)

)
E
(
x2y1 + y1δx2

)
E
(
x1y2 + y2δx1

)
E
(
y1y2

) ]
.

Substituting Ã into Σ̃ also gives

Σ̃ = R̃(0)− R̃(−1)R̃−1(0)R̃>(−1). (A.2)

Using (A.1) and (A.2), and denoting δR(0) := R̃(0) − R(0) and δR(−1) := R̃(−1) −
R(−1), it follows that

∆ := Σ̃−Σ
= δR(0)− δR(−1)R−1(0)R(1)

−R̃(−1)R−1(0)δR(1)

+R̃(−1)R−1(0)δR(0)R̃−1(0)R̃(1).

(A.3)

By the definition of S and S̃ defined in (2.5) we know that S̃−S = ∆2,2, the (2,2)-element
of matrix ∆. Hence, we can decompose S̃ into S+∆2,2. Annoying algebraic computation
from (A.3) gives ∆2,2 = (Sy − S)I, where I is defined in (2.7), and the formula in (2.6)
is obtained by denoting Θ = (Sy − S)I.
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Appendix B

Derivation of the NSI using Simple
Network

Here, we re-formulate the NSI using the simple network (Figure 3.1). Let u = αx+βy+γz
form the BLP of w, then there exist p, {fr, r = 1, 2, . . . , p}, and {dr, r = 1, 2, . . . , p} such
that wt =

∑p
r=1[frut−r + drwt−r] + εt, where ε is a stationary white noise possessing the

smallest variance among G = span({x, y, z, v1, v2, v3}). Replacing u with the weighted
trajectory, we obtain

wt =

p∑
r=1

[frut−r + drwt−r] + εt

=

p∑
r=1

[fr(αxt−r + βyt−r + γzt−r) + drwt−r] + εt

=

p∑
r=1

[αfrxt−r + βfryt−r + γfrzt−r + drwt−r] + εt.

(B.1)

On the other hand, fitting to data the following empirical regression

wt =

p∑
r=1

[arxt−r + bryt−r + crzt−r + grvt−r + drwt−r] + ε̃t, (B.2)

where grvt−r :=
∑3

k=1 gk,rvk,t−r for convenience.

• If v is stochastically independent of x, y, z, w, then we have gr ≡ 0. Since {ar}, {br}, {cr}
can be obtained through Least-Squares method, comparing (B.2) with (B.1), we
have

p∑
r=1

ar = α

p∑
r=1

fr,

p∑
r=1

br = β

p∑
r=1

fr,

p∑
r=1

cr = γ

p∑
r=1

fr, (B.3)

and get

α : β : γ =

p∑
r=1

ar :

p∑
r=1

br :

p∑
r=1

cr, provided

p∑
r=1

fr > 0, (B.4)
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where sgn(α) = sgn(

p∑
r=1

ar), sgn(β) = sgn(

p∑
r=1

br), and sgn(γ) = sgn(

p∑
r=1

cr).

• If v is linear dependent of x, y, z, w, then gr � 0 and {ar}, {br}, {cr} will be af-
fected. However, since ε in (B.1) possessing the smallest variance among G, taking
out v does not increase the variance of ε̃, therefore we still can correct the model
coefficients by ruling out the useless information v.

Finally, the neuron synaptic index from x, y, z to w are defined respectively as

Nx→w := α
|α|+|β|+|γ|Fu→w,

Ny→w := β
|α|+|β|+|γ|Fu→w,

Nz→w := γ
|α|+|β|+|γ|Fu→w,

(B.5)

where |Nx→w|+ |Ny→w|+ |Nz→w| = Fu→w is the GC index from the weighted trajectory
u = αx+ βy + γz to the target trajectory w.
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